卸载cuda11.2(个人记录)

进入cuda-11-2 找到cuda-unistaller文件的话执行

sudo ./cuda-uninstaller

相应的对于其他11.0以上版本也可以在bin目录中查看到该文件

笔者还遇到过一个问题,在安装cudatoolkit11.3时没有在bin目录下面找到uninstaller文件

后来直接在cuda/bin下面找到了uninstaller文件

运行后会提示用户想要卸载哪一个版本,这时选择想要卸载的版本即可

### 解决方案概述 当遇到 `cuDNN`、`cuFFT` 或 `cuBLAS` 插件重复注册 (`duplicate factory registration`) 的问题时,通常是因为 TensorFlow 或其他依赖项尝试多次加载相同的 CUDA 库。以下是针对此问题的具体分析和解决方案。 --- #### 1. **问题的根本原因** 此类错误通常是由于多个版本的 CUDA 工具包 (CUDA Toolkit) 被安装在同一环境中,或者某些库被重复链接到不同的路径中。具体来说: - 如果 TensorFlow 尝试加载两个不同版本的 cuBLAS/cuDNN/cuFFT,则可能会触发冲突。 - 当前环境可能包含了旧版或不兼容的 CUDA 动态链接库文件 (.dll/.so),这些文件会被优先加载而不是最新版本[^1]。 --- #### 2. **解决方法** ##### 方法一:清理多余 CUDA 版本 确保只保留一个版本的 CUDA 安装目录,并将其加入系统的 PATH 环境变量中。可以通过以下命令检查当前系统中存在的 CUDA 文件位置: ```bash which nvcc ldd --version ``` 如果发现存在多条记录指向不同的 CUDA 安装路径,请卸载多余的版本并重新配置环境变量[^3]。 ##### 方法二:更新至匹配版本 确认所使用的 TensorFlow 版本与 CUDA/CuDNN 的推荐组合一致。例如,在 TensorFlow 2.10 中建议搭配 CUDA 11.x 及 CuDNN v8.x 。可以访问 NVIDIA 官方文档获取最新的兼容性列表[^4]: ```plaintext TensorFlow Version -> Required CUDA / cuDNN Versions TF 2.10 -> CUDA 11.2, cuDNN 8.1+ ``` ##### 方法三:禁用不必要的插件重写逻辑 有时第三方框架会强制覆盖默认行为从而引发上述异常情况;对此可考虑通过设置环境标志位来规避潜在风险: ```python import os os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' os.environ['TF_DISABLE_PLUGIN_CUBLAS'] = 'true' # 避免二次加载cublas模块 ``` 注意以上操作仅适用于开发调试阶段而非生产部署场景下长期应用[^2]。 --- #### 3. **验证修复效果** 完成调整之后重启程序运行测试是否恢复正常工作状态。另外也可以借助 nvidia-smi 命令查看 GPU 使用状况进一步判断问题是否彻底消除。 --- ### 示例代码片段展示如何正确初始化CuFFT资源管理器对象实例化过程如下所示: ```cpp #include <cufft.h> // 创建 FFT 计划... int rank = 1; long long fft_size[] = { N }; cufftHandle plan; if(cufftPlanMany(&plan ,rank,(long*)fft_size,NULL,N/N,N, NULL,N/N,N,CUFFT_Z2Z,batch)!=CUFFT_SUCCESS){ fprintf(stderr,"Failed creating FFT plan\n"); } ``` 上面这段伪代码展示了利用 C++ 编程语言结合 CuFFT API 构建离散傅里叶变换规划的过程. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值