学习笔记13-目标检测算法的评估指标

学习链接:https://www.jianshu.com/p/fd9b1e89f983

1、mAP

MAP(mean Average Precision)平均精度均值,即AP(Average Precision)的平均值,它是目标检测算法的主要评估指标。目标检测模型通常会用速度和精度(mAP)指标描述优劣,mAP值越高,表明该目标检测模型在给定的数据集上的检测效果越好。
mAP是AP(Average Precision)的平均值:
其中:
Accuracy指准度,意味着系统误差(System Error)小,即偏差(Bias) 小,描述了的实际值与真实结果的偏离程度。其是预测为正实际为正和预测为负实际负占总样本的比例。
Precision指精度,意味着随机误差(Random Error)小,即方差(Variance)小,描述了实际值的扰动情况。其是预测实际为正,占预测为正的比例,Precision可以视作是模型找出来的数据的正确能力,举例:Precision=1表示模型找一个对一个,Presicion=0.5表示模型找出2个,能对1个。

在这里插入图片描述

2、precison-recall-f1

Precision(精度):意味着随机误差(Random Error)小,即方差(Variance)小,描述了实际值的扰动情况。其是预测实际为正,占预测为正的比例,Precision可以视作是模型找出来的数据的正确能力。

Recall(召回率):是预测为正实际为正占总体正样本的比例,Recall可以视作是模型在数据集中,检测出目标类型数据的能力,即是否把想找出来的都找出来了,Recall=1表示已经把想找出来的数据全部找出来了。

F1 Score:是Precision与Recall的调和平均(harmonic mean),是综合Precision与Recall的评估指标,用于综合反映整体的指标,避免Precision或Recall的单一极大值,Precision很大、Recall很小;或Precision很小,Recall很大,都不是好的检测能力。

举例:

有60个正样本,40个负样本,系统预测了50个正样本,其中40个是预测正确的正样本;预测了50个负样本,其中30个是预测正确的负样本。TP=40,FP=10;FN=20,TN=30。
在这里插入图片描述在这里插入图片描述
Precision(精确度) = 40/(40+10)=80%

Recall(召回率) = 40/(40+20)=66.7%

Accuracy(准确度) = (40+30)/(40+10+30+20) = 70%

F1 Score = 240/(240+10+20) = 72.7%
但是对于目标检测(Object Detection)算法来说
在这里插入图片描述

补:Precision与Recall曲线:
把每次预测结果的Precision和Recall计算出来,并按照关系画出曲线,就是P-R曲线。

3、Confidence Score (置信度分数)与IoU (交并比)

Confidence Score (置信度分数) 其是一个分类器(Classifier)预测一个锚框(Anchor Box)中包含某个对象的概率(Probability)。通过设置Confidence Threshold置信度阈值可以过滤掉(不显示)小于threshold的预测对象。
IoU (Intersection over union)交并比其是预测框(Prediction)与原标记框(Ground truth)之间的重叠度(Overlap),最理想情况是完全重叠,即比值为1。IoU用于衡量预测框的准确度。
Confidence Score和IoU共同决定一个检测结果(detection)是Ture Positive还是False Positive
当一个检测结果(detection)被认为是True Positive时,需要同时满足下面三个条件:

1,Confidence Score > Confidence Threshold(在detect.py自己设定一般不低于0.5)
2,预测类别匹配(match)真实值(Ground truth)的类别
3,预测边界框(Bounding box)的IoU大于设定阈值,如0.5

不满足条件2或条件3,则认为是False Positive。

4、计算MAP方法

AP计算: 通过计算每一个recall值对应的Precision值的平均值,可以获得一个数值形式(numerical metric)的评估指标:AP(Average Precision),用于衡量的是训练出来的模型在感兴趣的类别上的检测能力的好坏。
AP计算可以定义为经过插值的precision-recall曲线与X轴包络的面积。这种方式称为:AUC (Area under curve)
MAP计算:
假设有K种类别,K>1,那么mAP的计算公式为:
在这里插入图片描述
当类别K=1时,mAP = AP。
补充:
mAP(IoU@0.5): 正常MAP算法。
mAP(IoU@0.75): 这是一个对检测能力要求更高的标准
mAP(IoU@[0.5:0.05:0.95]): 需要计算10个IoU阈值下的mAP,然后计算平均值。这个评估指标比仅考虑通用IoU阈值(0.5)评估指标更能体现出模型的精度。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值