显卡云 GPT-SoVITS 声音克隆程序部署教程

带有训练教程及转存在123Pan的一键包:
仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛 (biliwind.com) 2

购买服务器

首先,我们需要买一台显卡云服务器

极度推荐使用雨云,优惠码:lsm2023

选择宿迁显卡云

图片[1]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛-风屿岛

若只是短期使用,建议选择最高配置,如果是长期使用,建议按需选择(主要关注显存)

图片[2]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛-风屿岛

图片[2]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛-风屿岛1920×1008 265 KB

系统选择Windows Server 2022 数据中心版

此系统已默认安装NVIDIA显卡驱动,CUDA已启用,版本如下:

NVIDIA-SMI 537.70, Driver Version: 537.70, CUDA Version: 12.2

之后点击右下角的试用即可5元获得一天的使用时长

图片[3]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛-风屿岛

图片[3]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛-风屿岛1920×1008 215 KB

如果GPU资源不足,则可使用更低显存的版本

图片[4]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛-风屿岛

部署GPT-SoVITS

连接服务器

服务器创建完成后,点击管理进入管理面板

图片[5]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛-风屿岛

找到首页的NAT端口映射,复制默认生成的地址

图片[6]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛-风屿岛

之后在你自己的电脑上搜索rdp,找到远程桌面连接并打开

图片[7]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛-风屿岛

将复制的内容填入“计算机”输入框中,点击“显示选项”

图片[8]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛-风屿岛

将此处的用户名填入

图片[9]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛-风屿岛

图片[9]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛-风屿岛1920×1008 303 KB

点击连接后会弹出输入密码

图片[10]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛-风屿岛

复制并填入“远程密码”

图片[11]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛-风屿岛

遇到下图提示直接点击是即可

图片[12]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛-风屿岛

下载

进入桌面后,打开浏览器

图片[13]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛-风屿岛

图片[13]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛-风屿岛1044×595 47 KB

之后打开我转存在123Pan的一键包

如果你希望获得最新版的,可以用魔法去抱脸上下载:预打包文件 (huggingface.co) 2

之后在服务器上下一个解压软件(请勿使用360、好压等流氓软件),可选的有:

下载时进度卡在100% 0KB/s:

图片[14]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛-风屿岛

图片[14]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛-风屿岛1309×727 187 KB

打开edge的设置-隐私、搜索和服务

关闭Microsoft Defender Smartscreen即可(它会在下载后扫描文件导致卡在100% 0KB/s)

解压

解压GPT-SoVITS一键包

图片[15]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛-风屿岛

如果你还有其他事要做(如准备数据集)则可以勾选低优先级模式

图片[16]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛-风屿岛

图片[16]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型 - 风屿岛-风屿岛713×525 127 KB

等待GPT-SoVITS解压完成即可

训练纳西妲声音模型

生成nahida.list

在GPT-SoVITS目录中新建一个raw_audio文件夹用于放置数据集

将先前下载的数据集解压进里面,并且建议将其放置在单独的文件夹中(即新建一个叫nahida的文件夹,再将*.wav和*.lab解压进去)

最终的目录结构看起来是这样的:

GPT-SoVITS\raw_audio\nahida\*.wav

GPT-SoVITS\raw_audio\nahida\*.lab

说明

.wav后缀为角色语音
.lab后缀为打标好的文件

之后打开GPT-SoVITS目录下的go-webui.bat打开web界面

进入webui后直接修改下图所指的位置

图片[17]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型-风屿岛

将其替换为你数据集(*.wav)所在的文件夹,如果你按照本教程操作,那么改为:

 

C:\Users\Administrator\Desktop\GPT-SoVITS-beta0128\raw_audio\nahida

点击批量ASR后等待即可,当ASR进程输出信息中显示完成时进行下一步

若你还是不确定是否完成,可以前往output\asr_opt目录,打开nahida.list文件

图片[18]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型-风屿岛

上图即为完成后的效果

准备训练

之后打开上方的第二个tab,修改红框中的内容

图片[19]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型-风屿岛

图片[20]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型-风屿岛

如果你按照本教程操作,下图三个框中的内容应该为

  1. nahida
  2. C:\Users\Administrator\Desktop\GPT-SoVITS-beta0128\output\asr_opt\nahida.list
  3. C:\Users\Administrator\Desktop\GPT-SoVITS-beta0128\raw_audio\nahida

图片[21]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型-风屿岛

之后按顺序进行以下8步操作

图片[22]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型-风屿岛

例:点击1的按钮后等待,直到2中提示任务完成,之后继续点击3观察4,如此往复

图片[23]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型-风屿岛

根据大佬指出,此处直接点击7(开启一键三连)即可

SoVITS与GPT训练

之后打开这个tab的第二个tab

图片[24]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型-风屿岛

batch_size根据显存大小和模型数据量调整若使用8G显存的套餐,则所有保持默认即可

你需要分别进行SoVITS训练和GPT训练,都训练完成后才能进行推理

TTS音频推理

图片[25]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型-风屿岛

TTS推理WebUI进程输出信息中提示进程已开启后需要稍等1分钟左右加载模型

模型加载完成后会自动打开TTS推理webui,以下是主要功能区的介绍

图片[26]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型-风屿岛

  1. 放置参考音频的地方(会影响最终推理出音频的语气与情绪)
  2. 参考音频中说了什么内容
  3. 你要把什么文本转换成语音
  4. 把3中的内容转换为语音
  5. 点击4后输出的音频

图片[27]-仅需5元,手把手教你训练纳西妲GPT-SoVITS模型-风屿岛

参考音频可以在数据集中随便找一些略长的音频

长文本合成效果:

### GPT-SoVITS声音克隆工具概述 GPT-SoVITS是一个用于创建高度逼真语音合成模型的强大工具,能够精确复制特定个体的声音特征[^1]。 ### 安装环境配置 为了顺利运行GPT-SoVITS项目,需先搭建合适的开发环境。推荐使用Anaconda来管理Python版本及相关依赖库: ```bash conda create -n sovits python=3.8 conda activate sovits pip install torch==1.9.0 torchaudio===0.9.0 -f https://download.pytorch.org/whl/torch_stable.html pip install -r requirements.txt ``` 上述命令会安装PyTorch以及其它必要的软件包,确保所有组件兼容并正常工作。 ### 数据集准备 高质量的数据对于训练效果至关重要。应收集目标人物清晰无背景噪音的音频片段作为样本数据源。每条记录建议长度控制在几秒到十几秒之间,并保持一致的采样率(通常为22kHz)。这些素材将被用来提取声纹特征,进而构建个性化的发声模型。 ### 训练过程简介 完成前期准备工作之后就可以启动模型训练流程了。具体操作如下所示: ```python from utils import preprocess_dataset, train_model # 对原始音频文件执行预处理操作 preprocess_dataset('path/to/audio/files') # 开始正式训练阶段 train_model(config='config.json', checkpoint_dir='./checkpoints') ``` 此部分涉及复杂的算法运算,在GPU支持下可以显著加快收敛速度。经过若干轮迭代优化后即可获得初步可用的结果。 ### 测试与应用实例 当模型训练完毕并通过验证测试后便能投入实际应用场景当中去了。下面给出一段简单的调用代码供参考: ```python import os from text_to_speech import TTSModel model_path = './checkpoints/best.pth' output_wav = 'generated_audio.wav' tts = TTSModel(model_path=model_path) audio_data = tts.synthesize(text="这是一句测试语句") os.write(output_wav, audio_data) print(f"已成功生成音频文件 {output_wav}") ``` 这段脚本展示了如何加载已经训练好的权重参数并将指定的文字转换成对应的语音输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值