Level3 — 集成学习 — 提升法Boosting — AdaBoost

56 篇文章 3 订阅 ¥59.90 ¥99.00
56 篇文章 6 订阅 ¥39.90 ¥99.00
本文深入探讨了AdaBoost,一种集成学习算法,特别是其作为Boosting算法的实例。AdaBoost通过调整样本权重,重视被弱分类器错误分类的样本,从而构建强分类器。文章还对比了AdaBoost与Bagging算法的区别,强调了AdaBoost在减少偏差方面的优势。
摘要由CSDN通过智能技术生成

目录

Boosting算法

AdaBoost

 案例

AdaBoost算法理论支撑

与Bagging算法比较

Python实现AdaBoost


Boosting算法

        Boosting算法是一种集成学习算法。基本思想如下:先从初始训练集训练出一个基学习器,再根据基学习器的表现对训练样本分布进行调整,使得先前基学习器做错的样本在后续受到更多关注,然后基于调整后的样本分布训练下一个基学习器,如此重复进行,直到基学习器数据达到事先指定的值T,最终将这T个基学习器进行加权结合。

        与Bagging算法相同的是:

(1)它们都是一类算法的抽象框架,

(2)都由多个弱学习器组成,

(3 )每个弱学习器对样本都有一个预测值,最后综合每个弱分类器的结果得到最终的预测值。

与Bagging算法不同的是,

(1)在Bagging算法中,对样本进行Boostrap 抽样,每个样本关注度一样,而在Boosting算法中,会依次训练每个弱学习器,在训练后一个弱学习器时,更关注被前一个弱分类器错分的样本。这也是该算法叫Boosting提升之意。

        Boosting算法最著名的代表是AdaBoost。下面详细介绍AdaBoost算法。


AdaBoost

     

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ErbaoLiu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值