目录
Boosting算法
Boosting算法是一种集成学习算法。基本思想如下:先从初始训练集训练出一个基学习器,再根据基学习器的表现对训练样本分布进行调整,使得先前基学习器做错的样本在后续受到更多关注,然后基于调整后的样本分布训练下一个基学习器,如此重复进行,直到基学习器数据达到事先指定的值T,最终将这T个基学习器进行加权结合。
与Bagging算法相同的是:
(1)它们都是一类算法的抽象框架,
(2)都由多个弱学习器组成,
(3 )每个弱学习器对样本都有一个预测值,最后综合每个弱分类器的结果得到最终的预测值。
与Bagging算法不同的是,
(1)在Bagging算法中,对样本进行Boostrap 抽样,每个样本关注度一样,而在Boosting算法中,会依次训练每个弱学习器,在训练后一个弱学习器时,更关注被前一个弱分类器错分的样本。这也是该算法叫Boosting提升之意。
Boosting算法最著名的代表是AdaBoost。下面详细介绍AdaBoost算法。
AdaBoost