第7章-使用统计方法进行变量有效性测试-7.4.2-多元线性回归

56 篇文章 6 订阅 ¥39.90 ¥99.00
本文详细介绍了多元线性回归模型,包括总体回归函数、样本回归函数、线性回归模型的假定、普通最小二乘法(OLS)、拟合优度指标、F检验和回归系数的t检验。并通过Python实现构建多元线性回归模型,涵盖了数据理解、数据清洗、相关分析、回归分析和残差分析。最后,通过实例展示了残差-预测图和残差的正态性检验,确保模型的可靠性。
摘要由CSDN通过智能技术生成
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ErbaoLiu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值