数论四大定理之威尔逊定理

本文总结了网上关于威尔逊定理的证明,用逻辑更通顺的数学语言表述出来,仅供参考

威尔逊定理

p p p 为质数 ⟺ ( p − 1 ) ! ≡ − 1 ( m o d    p ) \Longleftrightarrow(p-1)!\equiv -1(\mod p) (p1)!1(modp)

证明:

  1. 必要性:
    ( p − 1 ) ! ≡ − 1 ( m o d    p ) ⟺ p ∣ ( p − 1 ) ! + 1 (p-1)!\equiv -1(\mod p)\Longleftrightarrow p|(p-1)!+1 (p1)!1(modp)p(p1)!+1
    假设 p p p 不是质数,且 a a a p p p 的质因子。
    易知 a ∣ ( p − 1 ) ! a|(p-1)! a(p1)!,则 a ∤ ( p − 1 ) ! + 1 a\nmid(p-1)!+1 a(p1)!+1
    p ∣ ( p − 1 ) ! + 1 ⟹ a ∣ ( p − 1 ) ! + 1 p|(p-1)!+1\Longrightarrow a|(p-1)!+1 p(p1)!+1a(p1)!+1,前后矛盾!
    p p p 一定为质数。

关于充分性的证明,如果直接看证明的话,容易一脸懵逼。如果带着证明思路看,可能会好得多。证明思路如下:证明集合 { 2 , 3 , ⋯   , p − 2 } \{2,3,\cdots,p-2\} {2,3,,p2}中存在两两配对的元素 a , b a,b a,b,有 a b ≡ 1 ( m o d    p ) ab\equiv1(\mod p) ab1(modp)。即 ( p − 2 ) ! ≡ 1 ( m o d    p ) (p-2)!\equiv1(\mod p) (p2)!1(modp),又 p − 1 ≡ − 1 ( m o d    p ) p-1\equiv-1(\mod p) p11(modp),所以有 ( p − 1 ) ! ≡ − 1 ( m o d    p ) (p-1)!\equiv-1(\mod p) (p1)!1(modp)

  1. 充分性:
    p = 2 p = 2 p=2 时, ( p − 1 ) ! ≡ − 1 ( m o d    p ) (p-1)!\equiv -1(\mod p) (p1)!1(modp)显然成立。
    p = 3 p = 3 p=3 时, ( p − 1 ) ! ≡ − 1 ( m o d    p ) (p-1)!\equiv -1(\mod p) (p1)!1(modp)显然成立。
    p ≥ 5 p\ge5 p5时,令 M = { 2 , 3 , ⋯   , p − 2 } , N = { 1 , 2 , ⋯   , p − 1 } M=\{2,3,\cdots,p-2\},N=\{1,2,\cdots,p-1\} M={2,3,,p2},N={1,2,,p1} ∀ a ∈ M \forall a\in M aM,令 S = a ⋅ N = { a , 2 a , ⋯   , ( p − 1 ) a } S=a\cdot N=\{a,2a,\cdots,(p-1)a\} S=aN={a,2a,,(p1)a} 注意 ∀ t ∈ S , p ∤ t \forall t\in S,p\nmid t tS,pt
    ∴ ∀ t 1 , t 2 ∈ S , t 1 < t 2 ⟹ t 2 − t 1 ∈ S ⟹ p ∤ ( t 2 − t 1 ) \therefore\forall t_1,t_2\in S,t_1<t_2\Longrightarrow t_2-t_1\in S\Longrightarrow p\nmid(t_2-t_1) t1,t2S,t1<t2t2t1Sp(t2t1)
    根据同余的定义可知, S S S中所有元素模 p p p都不同余
    ∴ S m o d    p = N \therefore S\mod p=N Smodp=N
    也就是说 ∀ a ∈ M , ∃ x ∈ N \forall a\in M,\exists x\in N aM,xN,一定有 a x ≡ 1 ( m o d    p ) ax\equiv1(\mod p) ax1(modp)
    x = 1 x=1 x=1,则 a x % p = a % p = a , ∴ x ≠ 1 ax\%p=a\%p=a,\therefore x\ne1 ax%p=a%p=a,x=1
    x = p − 1 x=p-1 x=p1,则
    a x % p = ( a p − a ) % p = [ ( a − 1 ) p + p − a ] % p = p − a , ∴ x ≠ p − 1 ax\%p=(ap-a)\%p=[(a-1)p+p-a]\%p=p-a,\therefore x\ne p-1 ax%p=(apa)%p=[(a1)p+pa]%p=pa,x=p1
    x = a x=a x=a,则
    a 2 ≡ 1 ( m o d    p ) ⟹ ( a + 1 ) ( a − 1 ) ≡ 0 ( m o d    p ) a^2\equiv1(\mod p)\Longrightarrow(a+1)(a-1)\equiv0(\mod p) a21(modp)(a+1)(a1)0(modp)
    ⟹ a = 1 \Longrightarrow a=1 a=1 a = p − 1 ∴ x ≠ a a=p-1\therefore x\ne a a=p1x=a
    综上所述, ∀ a ∈ M , ∃ x ∈ M \forall a\in M,\exists x\in M aM,xM,且 a ≠ x a\ne x a=x,有 a x ≡ 1 ( m o d    p ) ax\equiv1(\mod p) ax1(modp)
    所以 ( p − 1 ) ! ≡ 1 ⋅ ( p − 1 ) ≡ − 1 ( m o d    p ) (p-1)!\equiv1\cdot(p-1)\equiv-1(\mod p) (p1)!1(p1)1(modp)

证毕!

  • 7
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值