统计决策与贝叶斯估计

博客探讨了贝叶斯统计中的决策理论,包括平方损失函数、风险函数和贝叶斯风险的概念。它详细介绍了后验概率公式以及如何通过共轭先验分布求解问题。此外,还解释了贝叶斯估计量的定义,并给出了一个二项分布与贝塔分布共轭的例子。整个讨论聚焦于如何在已知先验分布和损失函数的情况下,找到最优的决策函数以最小化贝叶斯风险。
摘要由CSDN通过智能技术生成

统计决策与贝叶斯估计

平方损失函数:L( θ , d \theta,d θ,d) = ( θ − d ) 2 (\theta-d)^2 (θd)2
其中: d ( X ) d(X) d(X)-决策函数
R( θ , d \theta,d θ,d) = E θ [ L ( θ , d ( X ) ) ] E_\theta[L(\theta,d(X))] Eθ[L(θ,d(X))] 称为决策函数 d ( X ) d(X) d(X)风险函数,表示当真参数为 θ \theta θ时,采用决策 d d d所遭受的平均损失.
R B ( d ) = E [ R ( θ , d ) ] R_B(d) = E[R(\theta,d)] RB(d)=E[R(θ,d)] 称为d的贝叶斯风险.

后验概率公式
h ( θ ∣ x ) = π ( θ ) q ( x ∣ θ ) m ( x ) h(\theta|x) = \frac{\pi(\theta)q(x|\theta)}{m(x)} h(θx)=m(x)π(θ)q(xθ)
后验分布集中体现了样本和先验分布两者所提供的关于总体信息的总和。

共轭先验分布求解:
1.求解似然函数 q ( x ∣ θ ) q(x|\theta) q(xθ);
2.根据 q ( x ∣ θ ) q(x|\theta) q(xθ)中所含的 θ \theta θ因式的情况,选取与似然函数具有相同核的分布作为先验分布,这个分布往往就是共轭先验分布.
eg: 总体服从二项分布B(N, θ \theta θ), 共轭先验分布是 贝塔分布 Be( α , β \alpha,\beta α,β)

贝叶斯估计
R B ( d ∗ ) = inf ⁡ d R B ( d ) R_B(d^*) =\displaystyle\inf_{d}R_B(d) RB(d)=dinfRB(d) , ∀ d ∈ D \forall d\in D dD
贝叶斯估计量 d ∗ ( X ) d^*(X) d(X) 就是使贝叶斯风险 R B ( d ) R_B(d) RB(d) 达到最小的决策函数.
θ \theta θ的先验分布为 π ( θ ) \pi(\theta) π(θ)和损失函数为 L( θ , d \theta,d θ,d) = ( θ − d ) 2 (\theta-d)^2 (θd)2 ,则 θ \theta θ的贝叶斯估计是
d ∗ ( X ) = E ( θ ∣ X = x ) = ∫ Θ θ h ( θ ∣ x ) d θ d^*(X) = E(\theta|X=x) = \int_\Theta\theta h(\theta |x)d\theta d(X)=E(θX=x)=Θθh(θx)dθ 其中: h ( θ ∣ x ) h(\theta |x) h(θx)为参数 θ \theta θ的后验密度.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值