统计决策与贝叶斯估计
平方损失函数:L(
θ
,
d
\theta,d
θ,d) =
(
θ
−
d
)
2
(\theta-d)^2
(θ−d)2
其中:
d
(
X
)
d(X)
d(X)-决策函数
R(
θ
,
d
\theta,d
θ,d) =
E
θ
[
L
(
θ
,
d
(
X
)
)
]
E_\theta[L(\theta,d(X))]
Eθ[L(θ,d(X))] 称为决策函数
d
(
X
)
d(X)
d(X)的风险函数,表示当真参数为
θ
\theta
θ时,采用决策
d
d
d所遭受的平均损失.
R
B
(
d
)
=
E
[
R
(
θ
,
d
)
]
R_B(d) = E[R(\theta,d)]
RB(d)=E[R(θ,d)] 称为d的贝叶斯风险.
后验概率公式
h
(
θ
∣
x
)
=
π
(
θ
)
q
(
x
∣
θ
)
m
(
x
)
h(\theta|x) = \frac{\pi(\theta)q(x|\theta)}{m(x)}
h(θ∣x)=m(x)π(θ)q(x∣θ)
后验分布集中体现了样本和先验分布两者所提供的关于总体信息的总和。
共轭先验分布求解:
1.求解似然函数
q
(
x
∣
θ
)
q(x|\theta)
q(x∣θ);
2.根据
q
(
x
∣
θ
)
q(x|\theta)
q(x∣θ)中所含的
θ
\theta
θ因式的情况,选取与似然函数具有相同核的分布作为先验分布,这个分布往往就是共轭先验分布.
eg: 总体服从二项分布B(N,
θ
\theta
θ), 共轭先验分布是 贝塔分布 Be(
α
,
β
\alpha,\beta
α,β)
贝叶斯估计
R
B
(
d
∗
)
=
inf
d
R
B
(
d
)
R_B(d^*) =\displaystyle\inf_{d}R_B(d)
RB(d∗)=dinfRB(d) ,
∀
d
∈
D
\forall d\in D
∀d∈D
贝叶斯估计量
d
∗
(
X
)
d^*(X)
d∗(X) 就是使贝叶斯风险
R
B
(
d
)
R_B(d)
RB(d) 达到最小的决策函数.
设
θ
\theta
θ的先验分布为
π
(
θ
)
\pi(\theta)
π(θ)和损失函数为 L(
θ
,
d
\theta,d
θ,d) =
(
θ
−
d
)
2
(\theta-d)^2
(θ−d)2 ,则
θ
\theta
θ的贝叶斯估计是
d
∗
(
X
)
=
E
(
θ
∣
X
=
x
)
=
∫
Θ
θ
h
(
θ
∣
x
)
d
θ
d^*(X) = E(\theta|X=x) = \int_\Theta\theta h(\theta |x)d\theta
d∗(X)=E(θ∣X=x)=∫Θθh(θ∣x)dθ 其中:
h
(
θ
∣
x
)
h(\theta |x)
h(θ∣x)为参数
θ
\theta
θ的后验密度.