正态总体参数的点估计和区间估计

区间估计求解步骤:
1.构造统计量 u ( X 1 , X 2 ⋯   , X n ; θ ) u(X_1,X_2\cdots ,X_n;\theta) u(X1,X2,Xn;θ)
2. P { c < u ( X 1 , X 2 ⋯   , X n ; θ ) < d } = 1 − α P\left \{ c< u(X_1,X_2\cdots ,X_n;\theta)<d \right \}=1-\alpha P{c<u(X1,X2,Xn;θ)<d}=1α
3.求得 θ \theta θ 1 − α 1-\alpha 1α置信区间

eg1:
设总体 X ∼ N ( μ , σ 2 ) X\sim N(\mu ,\sigma ^2) XN(μ,σ2), 则 μ \mu μ的区间估计:
σ 2 \sigma ^2 σ2已知:
由于 X ‾ ∼ N ( μ , σ 2 n ) \overline{X}\sim N(\mu ,\frac{\sigma ^2}{n}) XN(μ,nσ2),故 X ‾ − μ σ / n ∼ N ( 0 , 1 ) \frac{\overline{X}-\mu }{\sigma/\sqrt{n}}\sim N(0,1) σ/n XμN(0,1)
对于给定的 α \alpha α, u α 2 u_\frac{\alpha}{2} u2α是标准正态分布的 α 2 \frac{\alpha}{2} 2α上侧分位数,于是
P { − u α 2 < X ‾ − μ σ / n < u α 2 } = 1 − α P\left \{ -u_\frac{\alpha}{2}< \frac{\overline{X}-\mu }{\sigma/\sqrt{n}}<u_\frac{\alpha}{2} \right \}=1-\alpha P{u2α<σ/n Xμ<u2α}=1α

P { X ‾ − u α 2 σ n < μ < X ‾ + u α 2 σ n } = 1 − α P\left \{ \overline{X}-u_\frac{\alpha}{2}\frac{\sigma}{\sqrt{n}}< \mu< \overline{X}+u_\frac{\alpha}{2}\frac{\sigma}{\sqrt{n}} \right \}=1-\alpha P{Xu2αn σ<μ<X+u2αn σ}=1α
μ \mu μ的置信度为 1 − α 1-\alpha 1α的置信区间为 ( X ‾ − u α 2 σ n , X ‾ + u α 2 σ n ) \left (\overline{X}-u_\frac{\alpha}{2}\frac{\sigma}{\sqrt{n}},\overline{X}+u_\frac{\alpha}{2}\frac{\sigma}{\sqrt{n}} \right ) (Xu2αn σ,X+u2αn σ)
α = 0.05 \alpha=0.05 α=0.05时, u α 2 u_\frac{\alpha}{2} u2α=1.96

σ 2 \sigma ^2 σ2未知:
μ \mu μ的置信度为 1 − α 1-\alpha 1α的置信区间为 ( X ‾ − t α 2 ( n − 1 ) S n ∗ n , X ‾ + t α 2 ( n − 1 ) S n ∗ n ) \left (\overline{X}-t_\frac{\alpha}{2}(n-1)\frac{S_n^*}{\sqrt{n}},\overline{X}+t_\frac{\alpha}{2}(n-1)\frac{S_n^*}{\sqrt{n}} \right ) (Xt2α(n1)n Sn,X+t2α(n1)n Sn)
其中: u α 2 σ n u_\frac{\alpha}{2}\frac{\sigma}{\sqrt{n}} u2αn σ是抽样误差.

eg2:
设总体 X ∼ N ( μ , σ 2 ) X\sim N(\mu ,\sigma ^2) XN(μ,σ2), μ \mu μ, σ 2 \sigma^2 σ2 均未知,则总体方差 σ 2 \sigma^2 σ2或标准差 σ \sigma σ的区间估计(讨论方差的区间估计可用于分析生产的稳定性与估计精度等问题):

σ 2 \sigma^2 σ2置信度为 1 − α 1-\alpha 1α的置信区间为
( ( n − 1 ) S n ∗ 2 χ α 2 2 ( n − 1 ) , ( n − 1 ) S n ∗ 2 χ 1 − α 2 2 ( n − 1 ) ) \left(\frac{(n-1){S_n^*}^2}{\chi_\frac{\alpha}{2}^2(n-1)} , \frac{(n-1){S_n^*}^2}{\chi_{1-\frac{\alpha}{2}}^2(n-1)}\right) (χ2α2(n1)(n1)Sn2,χ12α2(n1)(n1)Sn2)

最大似然估计
eg:已知 X 1 , X 2 . . . , X n X_1,X_2...,X_n X1,X2...,Xn是从两点分布Bernoulli(1,p)中抽取出来的独立同分布样本,参数p的似然估计:
L = ∏ i = 1 n p x i ( 1 − p ) 1 − x i = p ∑ x i ( 1 − p ) n − ∑ x i L =\displaystyle\prod_{i=1}^{n}p^{x_i}(1-p)^{1-x_i}=p^{\sum x_i}(1-p)^{n-\sum x_i} L=i=1npxi(1p)1xi=pxi(1p)nxi
ln ⁡ ( L ) = ∑ x i ln ⁡ p + ( n − ∑ x i ) ln ⁡ ( 1 − p ) \ln(L)=\sum x_i \ln p+(n-\sum x_i)\ln(1-p) ln(L)=xilnp+(nxi)ln(1p)
∂ ln ⁡ ( L ) ∂ p = 0 \frac{\partial\ln(L)}{\partial p} =0 pln(L)=0
p ^ = X ˉ \hat p=\bar{X} p^=Xˉ

泊松分布
P o s s i o n ( λ ) Possion(\lambda) Possion(λ)分布参数 λ \lambda λ的极大似然估计的渐近分布求置信区间
P ( X = x ) = λ x e − λ x ! P(X=x)=\frac{\lambda^x e^{-\lambda}}{x!} P(X=x)=x!λxeλ
L ( λ ) = ∏ i = 1 n λ x i e − λ x i ! = e − n λ λ ∑ x i / ∏ i = 1 n x i ! L(\lambda)=\displaystyle\prod_{i=1}^{n}\frac{\lambda^{x_i}e^{-\lambda}}{x_i!}=e^{-n\lambda}\lambda^{\sum x_i}/\displaystyle\prod_{i=1}^{n}x_i! L(λ)=i=1nxi!λxieλ=enλλxi/i=1nxi!
ln ⁡ ( λ ) = \ln(\lambda)= ln(λ)=
∂ ln ⁡ ( λ ) ∂ λ = 0 \frac{\partial\ln(\lambda)}{\partial \lambda} =0 λln(λ)=0
λ ^ = X ‾ \hat\lambda =\overline{X} λ^=X
根据CLT: n → ∞ , λ ^ ∼ N ( λ , λ / n ) n\to\infty,\hat\lambda\sim N(\lambda ,\lambda/n) n,λ^N(λ,λ/n)
λ ^ − λ λ / n ∼ N ( 0 , 1 ) \frac{\hat\lambda-\lambda}{\sqrt{\lambda/n}}\sim N(0 ,1) λ/n λ^λN(0,1)
λ ^ − u α / 2 λ ^ / n < λ < λ ^ + u α / 2 λ ^ / n \hat\lambda-u_{\alpha/2}\sqrt{\hat\lambda/n}<\lambda<\hat\lambda+u_{\alpha/2}\sqrt{\hat\lambda/n} λ^uα/2λ^/n <λ<λ^+uα/2λ^/n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值