假设检验

假设检验

原假设: 研究者想收集证据予以反对的假设,用 H 0 H_0 H0表示;
备择假设:研究者想收集证据予以支持的假设,用 H 1 H_1 H1表示.
假设分为双侧检验,单侧检验(左侧检验和右侧检验)
检验规则
W = { x : x ∈ Ω , x 使 H 0 否 定 } W=\{x: x\in\Omega, x使H_0否定\} W={x:xΩ,x使H0} W W W为拒绝域

		                      **零假设是真**                      **零假设不是真**
拒绝原假设            		第I类错误(弃真错误)						正确决定
不能拒绝原假设                  正确决定                         第II类错误(存伪错误)

第一类错误的概率记为 α \alpha α,被称为显著性水平.

检验统计量
标准化的检验统计量 = 点 估 计 量 − 假 设 值 点 估 计 量 的 抽 样 标 准 差 \frac{点估计量 - 假设值}{点估计量的抽样标准差}

临界值法决策:

  1. 计算标准化检验统计量 Z = x ˉ − μ σ / n ∼ N ( 0 , 1 ) Z = \frac{\bar{x}-\mu}{\sigma/\sqrt{n}}\thicksim N(0,1) Z=σ/n xˉμN(0,1);
  2. 计算的统计量和临界值比:
    双侧检验,|统计量|>临界值 Z α / 2 Z_{\alpha/2} Zα/2,拒绝 H 0 H_0 H0;
    左侧检验,统计量<-临界值 − Z α -Z_\alpha Zα,拒绝 H 0 H_0 H0;
    右侧检验,统计量>临界值 Z α Z_\alpha Zα,拒绝 H 0 H_0 H0;

P值决策(P-VALUE)
p值告诉我们:如果原假设是正确的话,我们得到目前这个样本数据的可能性有多大,如果这个可能性很小,就应该拒绝原假设.
决策规则:若p值< α \alpha α,拒绝 H 0 H_0 H0.

P值决策与统计量的比较:

  1. 用p值进行检验比根据统计量检验提供更多的信息;
  2. 统计量检验是我们事先给出的一个显著性水平,以此为标准进行决策,无法知道实际的显著性水平究竟是多少. (拒绝 H 0 H_0 H0的两个统计量可能有不同的显著性)

正态总体均值的假设检验

  1. 正态总体, μ \mu μ未知,方差已知 σ 2 \sigma^2 σ2 —U检验
    H 0 : μ = μ 0 H_0: \mu = \mu_0 H0:μ=μ0
    H 1 : μ ≠ μ 0 H_1: \mu \not = \mu_0 H1:μ=μ0
    统计量 U = x ˉ − μ 0 σ / n ∼ N ( 0 , 1 ) U = \frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}\thicksim N(0,1) U=σ/n xˉμ0N(0,1)
  2. 正态总体, μ \mu μ未知,方差未知 σ 2 \sigma^2 σ2—T检验
    H 0 : μ = μ 0 H_0: \mu = \mu_0 H0:μ=μ0
    H 1 : μ ≠ μ 0 H_1: \mu \not = \mu_0 H1:μ=μ0
    统计量 T = x ˉ − μ 0 S n ∗ / n ∼ t ( n − 1 ) T = \frac{\bar{x}-\mu_0}{S_n^*/\sqrt{n}}\thicksim t(n-1) T=Sn/n xˉμ0t(n1) 拒绝域 W = { ∣ T ∣ ≥ t α / 2 ( n − 1 ) } W = \{|T| \ge t_{\alpha/2}(n-1)\} W={Ttα/2(n1)}
  3. 方差未知且相等,两正态总体均值
    H 0 : μ 1 = μ 2 H_0: \mu_1 = \mu_2 H0:μ1=μ2
    H 1 : μ 1 ≠ μ 2 H_1: \mu_1 \not = \mu_2 H1:μ1=μ2

步骤:

  1. 观察数据,提出原假设和备择假设;
  2. 计算统计量;
  3. 计算拒绝域;
  4. 做出决策并解释结果.

正态总体方差的假设检验

  1. 单总体方差检验— χ 2 检 验 \chi^2检验 χ2
    假设
    H 0 : σ 2 = σ 0 2 H_0: \sigma^2 = \sigma_0^2 H0:σ2=σ02
    H 1 : σ 2 ≠ σ 0 2 H_1: \sigma^2 \not = \sigma_0^2 H1:σ2=σ02
    统计量
    χ 2 = n S n 2 σ 0 2 = ∑ i = 1 n ( X i − X ˉ ) 2 σ 0 2 ∼ χ 2 ( n − 1 ) \chi^2 =n\frac{S_n^2}{\sigma_0^2}=\frac{\displaystyle\sum_{i=1}^n(X_i-\bar{X})^2}{\sigma_0^2}\thicksim\chi^2(n-1) χ2=nσ02Sn2=σ02i=1n(XiXˉ)2χ2(n1)
    拒绝域
    W = { χ 2 ≤ χ 1 − α / 2 ( n − 1 ) } ∪ { χ 2 ≥ χ α / 2 ( n − 1 ) } W = \{\chi^2\le\chi_{1-\alpha/2}(n-1)\}\cup\{\chi^2\ge\chi_{\alpha/2}(n-1)\} W={χ2χ1α/2(n1)}{χ2χα/2(n1)}
    决策
    比较 χ 2 , χ 2 ≤ χ 1 − α / 2 ( n − 1 ) 和 χ 2 ≥ χ α / 2 ( n − 1 ) \chi^2,\chi^2\le\chi_{1-\alpha/2}(n-1)和\chi^2\ge\chi_{\alpha/2}(n-1) χ2,χ2χ1α/2(n1)χ2χα/2(n1)
  2. 两总体方差检验—F检验

单边检验
左侧检验,拒绝域在左
H 0 : μ ≥ μ 0 H_0: \mu\ge\mu_0 H0:μμ0
H 1 : μ < μ 0 H_1: \mu<\mu_0 H1:μ<μ0
右侧检验,拒绝域在右
H 0 : μ ≤ μ 0 H_0: \mu\le\mu_0 H0:μμ0
H 1 : μ > μ 0 H_1: \mu>\mu_0 H1:μ>μ0

非参数假设检验

  1. 卡方拟合优度检验
    需要检验一个分布,不是一个均值或者方差.
    一个数据的总体是否服从分布 P ( X = i ) = p i 0 P(X=i) = p_{i0} P(X=i)=pi0
    H 0 : p i = p i 0 H_0:p_i=p_{i0} H0:pi=pi0 H 1 : p i ≠ p i 0 H_1:p_i\not =p_{i0} H1:pi=pi0
    卡方检验法:
    χ 2 \chi^2 χ2= ∑ i = 1 m ( N i − n p i 0 ) 2 n p i 0 \displaystyle\sum_{i=1}^m\frac{(N_i-np_{i0})^2}{np_{i0}} i=1mnpi0(Ninpi0)2 —皮尔逊统计量

  2. KS-检验
    H 0 : H_0: H0:数据来自正态分布 H 1 : H_1: H1: 数据不来自正态分布
    判断数据服从正态分布方法: 画图法 histogram Q-Q ;统计量 KS值 p>0.05

  3. 卡方独立性检验—检验两个离散变量的相关关系

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值