回溯法-----7-1 n后问题 (30 分)

一、题目:7-1 n后问题 (30 分)

在n×n格的棋盘上放置彼此不受攻击的n个皇后。按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n后问题等价于在n×n格的棋盘上放置n个皇后,任何2个皇后不放在同一行或同一列或同一斜线上。
输入格式:
一个数字n
输出格式:
按照深度优先输出所有可行的解
输入样例:

4

结尾无空行
输出样例:

2 4 1 3

3 1 4 2

二、代码

#include<iostream>
#include<algorithm>
using namespace std;

int n; //棋盘的大小 
int x[100]; // 记录列号,即每个皇后的位置 

bool place(int t){ // 判断函数:因为t一层一层遍历,所以皇后肯定不会在同一行,仅判断不能同一列、同一斜线上, 
	
	for(int i=1;i<t;i++){ // t为结束范围,不是 n 
		// 在同一列、同一斜线(当行差大小等于列差大小)的表达: 
		if(x[i]==x[t] || (abs(t-i)==abs( x[i]-x[t] ) ))
			return false;	
	}
	return true;
}

// 回溯每一行,实现将二维问题转化为一维问题 
void Backtrack(int t){ //  t对应 行号 
	 
	if(t>n){
		
		for(int i=1;i<=n;i++){ //每次输出满足的x[n]
			cout<<x[i]<<" ";
		}	
		cout<<endl;
	}
	
	else{
		
		for(int i=1;i<=n;i++){ // 遍历所有列的情况 
			
		x[t]=i;
		if(place(t)) // 满足条件,继续往下走 
			Backtrack(t+1);
		}
	}
	
}

int main(){
	
	cin>>n;
	Backtrack(1);

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值