一、题目:7-1 n后问题 (30 分)
在n×n格的棋盘上放置彼此不受攻击的n个皇后。按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n后问题等价于在n×n格的棋盘上放置n个皇后,任何2个皇后不放在同一行或同一列或同一斜线上。
输入格式:
一个数字n
输出格式:
按照深度优先输出所有可行的解
输入样例:
4
结尾无空行
输出样例:
2 4 1 3
3 1 4 2
二、代码
#include<iostream>
#include<algorithm>
using namespace std;
int n; //棋盘的大小
int x[100]; // 记录列号,即每个皇后的位置
bool place(int t){ // 判断函数:因为t一层一层遍历,所以皇后肯定不会在同一行,仅判断不能同一列、同一斜线上,
for(int i=1;i<t;i++){ // t为结束范围,不是 n
// 在同一列、同一斜线(当行差大小等于列差大小)的表达:
if(x[i]==x[t] || (abs(t-i)==abs( x[i]-x[t] ) ))
return false;
}
return true;
}
// 回溯每一行,实现将二维问题转化为一维问题
void Backtrack(int t){ // t对应 行号
if(t>n){
for(int i=1;i<=n;i++){ //每次输出满足的x[n]
cout<<x[i]<<" ";
}
cout<<endl;
}
else{
for(int i=1;i<=n;i++){ // 遍历所有列的情况
x[t]=i;
if(place(t)) // 满足条件,继续往下走
Backtrack(t+1);
}
}
}
int main(){
cin>>n;
Backtrack(1);
return 0;
}