LangChain-Chatchat (原 Langchain-ChatGLM)(代码分享)
基于 ChatGLM 等大语言模型与 Langchain 等应用框架实现,开源、可离线部署的检索增强生成(RAG)大模型知识库项目。
部署还是比较简单的,照着文档一步一步来就行
先看下 python 版本,最好 3.10:https://www.python.org/download/releases/
python --version
然后拉取仓库,安装依赖
# 拉取仓库
git clone https://github.com/chatchat-space/Langchain-Chatchat.git
# 进入目录
cd Langchain-Chatchat
# 安装全部依赖
pip install -r requirements.txt
我 webui 和 api 都安装,可以按需安装的
#安装API
pip install -r requirements_api.txt
#安装webui
pip install -r requirements_webui.txt
下面需要下载模型,受限需要装下 Git LFS:https://docs.github.com/zh/repositories/working-with-files/managing-large-files/installing-git-large-file-storage
git lfs install
模型一般从 HuggingFace 下载: https://huggingface.co/models
不过由于某些原因可能无法访问,我们可以从镜像站点下载:https://hf-mirror.com/models
下载模型:
git clone https://hf-mirror.com/THUDM/chatglm2-6b
git clone https://hf-mirror.com/moka-ai/m3e-base
下面复制下默认的配置文件
python copy_config_example.py
初始化知识库
python init_database.py --recreate-vs
然后启动
python startup.py -a
顺利的话可以看到当前配置:
浏览器打开web界面:
API也顺利运行:
仍本水浒传进去,看看效果:
貌似还行,主要是 cpu 的话实在太慢…
看下我们的 pytorch 是否支持使用 GPU
python
import torch
torch.version
print(torch.cuda.is_available())
False 说明当前 pytorch 不支持 cuda
要用 gpu,需要装 cuda,然后装支持 cuda 的 pytorch
先下载 cuda toolkit :https://developer.nvidia.com/cuda-toolkit-archive
目前 pytorch 用的比较多的是 11.8 和 12.1
安装完成后,运行查看下 cuda 版本
nvcc –V
然后上 https://pytorch.org/ ,安装支持 cuda 的 pytorch
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
但我们已经装过 pytorch 的话,这样不一定能装上…
需要上 https://download.pytorch.org/whl/torch_stable.html
找到需要的版本,本地安装,
像CPU版本的,支持 python3.10 的,win版的是这个:
支持 cuda 12.1,python3.10 的,win版的是这个:
下载到本地,安装:
pip install g:/AI/torch-2.1.0+cu121-cp310-cp310-win_amd64.whl
安装完成后再看下是否支持 cuda:
python
import torch
torch.version
print(torch.cuda.is_available())
现在再启动 Langchain-Chatchat,就可以支持 GPU 了
但是我的 8G 显存太小了,使用 chatglm2-6b 的时候会报显存不足无法启动….
可以使用量化过的 chatglm2-6b-int4 模型(当然量化过的模型会傻一点…)
先下载模型:
然后修改 model_config.py,修改 LLM 模型名称(注意上面 MODEL_PATH 的 llm_model 里指定了 chatglm2-6b-int4 模型的路径,需要的话可以自己修改模型路径)
然后运行
python startup.py -a
可以看到我们已经是 cuda 的版本了
随便试试…
速度比 cpu 快了很多…
原来 智多星 是 李逵…
如何系统的去学习AI大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓