矩阵和行列式的区别:
- 即使内部元素相同,但是行列式
∣
1
2
2
1
∣
\begin{vmatrix} 1&2\\ 2&1 \end{vmatrix}
∣∣∣∣1221∣∣∣∣和矩阵
(
1
2
2
1
)
\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}
(1221)所传达的信息是不一样的,具有不同的性质.
矩阵是表达系统信息(systematical information)
,而行列式则是一种测度
,例如同样是数乘运算,矩阵的数乘要把数k乘以矩阵中的每一个元素,而行列式只需要乘某一行或者某一列即可. - 矩阵可以看成由若干行(列)向量拼成的,矩阵和行列式不同,矩阵不能运算,但是其若干行(列)之间存在某种联系,这种联系反应了矩阵的本质——
矩阵的秩
.
三种常见的矩阵计算
矩阵的转置
- 定义:将一个m*n矩阵的行列互换即可得到矩阵的转置.
- 性质:
- ( A T ) T = A (A^T)^T=A (AT)T=A
- ( k A ) T = k A T (kA)^T=kA^T (kA)T=kAT
- ∣ k A ∣ = k 2 ∣ A ∣ |kA|=k^2|A| ∣kA∣=k2∣A∣
- ( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT
- ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT
- 当 m = n 时 , ∣ A T ∣ = ∣ A ∣ 当m=n时,|A^T|=|A| 当m=n时,∣AT∣=∣A∣
矩阵的逆
- 如果一个矩阵有逆,则矩阵和矩阵的逆都要是
方阵
-
A
B
=
B
A
=
E
AB=BA=E
AB=BA=E,则称A是可逆矩阵,并且B是A的逆矩阵,而且
逆矩阵是唯一的
- 判别方法:
- 行列式 ∣ A ∣ ≠ 0 \begin{vmatrix} A \end{vmatrix}\ne0 ∣∣A∣∣=0
- A满秩
- 组成A的n个向量线性无关
伴随矩阵
- 定义:将行列式|A|的代数余子式按照如下形式排列形成的矩阵叫做A的伴随矩阵,记作
A
∗
A^*
A∗:
A ∗ = ( A 11 A 21 . . . . A n 1 A 12 A 22 . . . . A n 2 A 13 A 23 . . . A n 3 . . . . . . . . . . . . . . . . . . A 1 n A 2 n . . . . A n n ) A^*=\begin{pmatrix} A_{11}&A_{21}&....&A_{n1}\\ A_{12}&A_{22}&....&A_{n2}\\ A_{13}&A_{23}&...&A_{n3}\\ ....&.....&....&.....\\ A_{1n}&A_{2n}&....&A_{nn} \end{pmatrix} A∗=⎝⎜⎜⎜⎜⎛A11A12A13....A1nA21A22A23.....A2n...................An1An2An3.....Ann⎠⎟⎟⎟⎟⎞
伴随是按照矩阵的
列
排列代数余子式
正交矩阵
A是正交矩阵<=> A T A = E A^TA=E ATA=E<=> A − 1 = A T A^{-1}=A^T A−1=AT
矩阵的计算
大概了解了矩阵的常用三种计算的概念,接下来就要进行到计算环节了,我们先从具体矩阵入手.
矩阵的转置和伴随基本都是考计算量的,我们主要来看矩阵的逆如何来求:
1. 用伴随矩阵求矩阵的逆
- 如果|A|可逆,即 ∣ A ∣ ≠ 0 \begin{vmatrix} A \end{vmatrix}\ne0 ∣∣A∣∣=0,并且此时 A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{\begin{vmatrix} A \end{vmatrix}}A^* A−1=∣A∣1A∗
- 此种方法只要注意好 A i j A_{ij} Aij的位置和正负号即可
求矩阵
A
=
(
3
2
1
1
1
1
1
0
1
)
A=\begin{pmatrix} 3&2&1\\ 1&1&1\\ 1&0&1 \end{pmatrix}
A=⎝⎛311210111⎠⎞的逆矩阵:
解
:
∣
A
∣
=
3
+
2
+
0
−
1
−
2
=
2
≠
0
,
即
A
可
逆
A
11
=
∣
1
1
0
1
∣
=
1
,
A
12
=
−
∣
1
1
1
1
∣
=
0
,
A
13
=
∣
1
1
1
0
∣
=
−
1
A
21
=
−
∣
2
1
0
1
∣
=
−
2
,
A
22
=
∣
3
1
1
1
∣
=
2
,
A
23
=
−
∣
3
2
1
0
∣
=
−
2
A
31
=
−
∣
2
1
1
1
∣
=
1
,
A
32
=
−
∣
3
1
1
1
∣
=
−
2
,
A
33
=
∣
3
2
1
1
∣
=
1
故
A
−
1
=
1
∣
A
∣
A
∗
=
1
2
(
1
−
2
1
0
2
−
2
−
1
2
1
)
解:|A|=3+2+0-1-2=2\ne0,即A可逆\\ A_{11}=\begin{vmatrix} 1&1\\ 0&1 \end{vmatrix}=1,A_{12}=-\begin{vmatrix} 1&1\\ 1&1 \end{vmatrix}=0,A_{13}=\begin{vmatrix} 1&1\\ 1&0 \end{vmatrix}=-1\\ A_{21}=-\begin{vmatrix} 2&1\\ 0&1 \end{vmatrix}=-2,A_{22}=\begin{vmatrix} 3&1\\ 1&1 \end{vmatrix}=2,A_{23}=-\begin{vmatrix} 3&2\\ 1&0 \end{vmatrix}=-2\\ A_{31}=-\begin{vmatrix} 2&1\\ 1&1 \end{vmatrix}=1,A_{32}=-\begin{vmatrix} 3&1\\ 1&1 \end{vmatrix}=-2,A_{33}=\begin{vmatrix} 3&2\\ 1&1 \end{vmatrix}=1\\ 故A^{-1}=\frac{1}{|A|}A^*=\frac{1}{2}\begin{pmatrix} 1&-2&1\\ 0&2&-2\\ -1&2&1 \end{pmatrix}
解:∣A∣=3+2+0−1−2=2=0,即A可逆A11=∣∣∣∣1011∣∣∣∣=1,A12=−∣∣∣∣1111∣∣∣∣=0,A13=∣∣∣∣1110∣∣∣∣=−1A21=−∣∣∣∣2011∣∣∣∣=−2,A22=∣∣∣∣3111∣∣∣∣=2,A23=−∣∣∣∣3120∣∣∣∣=−2A31=−∣∣∣∣2111∣∣∣∣=1,A32=−∣∣∣∣3111∣∣∣∣=−2,A33=∣∣∣∣3121∣∣∣∣=1故A−1=∣A∣1A∗=21⎝⎛10−1−2221−21⎠⎞
2. 用初等变换来求矩阵的逆
- 我们常用矩阵的
初等行变换
来求逆: ( A E ) ⟶ 矩 阵 的 初 等 行 变 换 ( E A − 1 ) \begin{pmatrix} A&E \end{pmatrix}\longrightarrow_{矩阵的初等行变换}\begin{pmatrix} E&A^{-1} \end{pmatrix} (AE)⟶矩阵的初等行变换(EA−1)
求矩阵 A = ( 0 2 − 1 1 1 2 − 1 − 1 − 1 ) A=\begin{pmatrix} 0&2&-1\\ 1&1&2\\ -1&-1&-1 \end{pmatrix} A=⎝⎛01−121−1−12−1⎠⎞的逆矩阵:
( 0 2 − 1 1 0 0 1 1 2 0 1 0 − 1 − 1 − 1 0 0 1 ) ⟶ ( 1 1 2 0 1 0 0 2 − 1 1 0 0 0 0 1 0 1 1 ) ⟶ ( 1 1 0 0 − 1 − 2 0 2 0 1 1 1 0 0 1 0 1 1 ) ⟶ ( 1 1 0 0 − 1 − 2 0 1 0 1 2 1 2 1 2 0 0 1 0 1 1 ) ⟶ ( 1 0 0 − 1 2 − 3 2 − 5 2 0 1 0 1 2 1 2 1 2 0 0 1 0 1 1 ) \begin{pmatrix} 0&2&-1&1&0&0\\ 1&1&2&0&1&0\\ -1&-1&-1&0&0&1 \end{pmatrix}\longrightarrow\begin{pmatrix} 1&1&2&0&1&0\\ 0&2&-1&1&0&0\\ 0&0&1&0&1&1 \end{pmatrix}\longrightarrow\\\begin{pmatrix} 1&1&0&0&-1&-2\\ 0&2&0&1&1&1\\ 0&0&1&0&1&1 \end{pmatrix}\longrightarrow\begin{pmatrix} 1&1&0&0&-1&-2\\ 0&1&0&\frac{1}{2}&\frac{1}{2}&\frac{1}{2}\\ 0&0&1&0&1&1 \end{pmatrix}\\\longrightarrow\begin{pmatrix} 1&0&0&-\frac{1}{2}&-\frac{3}{2}&-\frac{5}{2}\\ 0&1&0&\frac{1}{2}&\frac{1}{2}&\frac{1}{2}\\ 0&0&1&0&1&1 \end{pmatrix} ⎝⎛01−121−1−12−1100010001⎠⎞⟶⎝⎛1001202−11010101001⎠⎞⟶⎝⎛100120001010−111−211⎠⎞⟶⎝⎛1001100010210−1211−2211⎠⎞⟶⎝⎛100010001−21210−23211−25211⎠⎞所以最后求得 A − 1 = ( 1 2 − 3 2 − 5 2 1 2 1 2 1 2 0 1 1 ) A^{-1}=\begin{pmatrix} \frac{1}{2}&-\frac{3}{2}&-\frac{5}{2}\\ \frac{1}{2}&\frac{1}{2}&\frac{1}{2}\\ 0&1&1 \end{pmatrix} A−1=⎝⎛21210−23211−25211⎠⎞