本文根据张宇讲解线性代数整理
1. 行列式的性质定义(第一定义)
此种定义行列式的方法直接给出了行列式的几何含义,由数学家柯西提出:
假设有行列式
∣
α
11
α
12
α
21
α
22
∣
|\begin{matrix} \alpha_{11} & \alpha_{12}\\ \alpha_{21} &\alpha_{22} \end{matrix}|
∣α11α21α12α22∣,我们把
(
α
11
,
α
12
)
(\alpha_{11},\alpha_{12})
(α11,α12)和
(
α
21
,
α
22
)
(\alpha_{21},\alpha_{22})
(α21,α22)分别看成二维向量,并将其在直角坐标系中表示出来:
求向量所围成的四边形面积
S
=
l
∗
m
∗
s
i
n
(
β
−
α
)
=
l
∗
m
∗
(
s
i
n
β
c
o
s
α
−
s
i
n
α
c
o
s
β
)
=
l
∗
cos
α
∗
m
∗
s
i
n
β
−
l
∗
s
i
n
α
∗
m
∗
c
o
s
β
=
α
11
∗
a
22
−
α
12
∗
α
21
S=l*m*sin(\beta-\alpha)\\=l*m*(sin{\beta}cos{\alpha}-sin{\alpha}cos{\beta})\\=l*\cos{\alpha}*m*sin{\beta}-l*sin{\alpha}*m*cos{\beta}\\=\alpha_{11}*a_{22}-\alpha_{12}*\alpha_{21}
S=l∗m∗sin(β−α)=l∗m∗(sinβcosα−sinαcosβ)=l∗cosα∗m∗sinβ−l∗sinα∗m∗cosβ=α11∗a22−α12∗α21
所以行列式的结果就是以这两个向量为邻边的平行四边形的面积
将上述结论做线性推广就可以得到行列式的第一定义:n阶行列式是由n维向量组成的,其结果为以这n个向量为邻边的n维图形的体积
2. 行列式的逆序数定义法
- 逆序:在一个n级排列 i 1 , i 2 . . . . . i n i_1,i_2.....i_n i1,i2.....in中,若 i s > i j i_s>i_j is>ij且 i s i_s is排在 i j i_j ij前面,则称这两个数构成一个逆序
- 逆序数:在一个排列中,逆序的总数称为该排列的逆序数,如 τ ( 231456 ) = 3 \tau(231456)=3 τ(231456)=3
n(n>=2)阶行列式:
∣
a
11
a
12
…
…
a
1
n
a
21
a
22
…
…
a
2
n
…
…
…
…
…
…
…
…
a
n
1
a
n
2
…
…
a
n
n
∣
=
Σ
j
1
,
j
2
.
.
.
.
,
j
n
(
−
1
)
τ
(
j
1
,
j
2
.
.
.
.
,
j
n
)
a
i
1
1
a
2
j
2
.
.
.
.
.
.
a
n
j
n
|\begin{matrix} a_{11} & a_{12} &……&a_{1n}\\ a_{21} & a_{22} &……&a_{2n}\\ ……&……&……&……\\ a_{n1}&a_{n2}&……&a_{nn} \end{matrix}|=\Sigma_{j_1,j_2....,j_n}(-1)^{\tau(j_1,j_2....,j_n)}a_{i1_1}a{2j_2}......a_{nj_n}
∣a11a21……an1a12a22……an2……………………a1na2n……ann∣=Σj1,j2....,jn(−1)τ(j1,j2....,jn)ai11a2j2......anjn
将上面这段翻译成人话主要是分成一下几个步骤:
- Σ j 1 , j 2 . . . . , j n \Sigma_{j_1,j_2....,j_n} Σj1,j2....,jn表示对所有n个列下表排列求和,共有 n ! n! n!项之和
- 每一项分别取自不同行,不同列的n个元素的乘积构成
- 要先按照行下标顺排,再看列下标有几个逆序数,决定正负号
我们经常用的画图法就是属于用第二定义来求解,可见一般用其解决2阶或者3阶问题比较方便,大于3阶的则需要接下来的第三定义.
3. 行列式的展开定理(第三定义)
行列式的值等于行列式的某行(列)元素分别乘其相对应的代数余子式后再求和,其核心思想是降阶
.