概率论与数理统计——参数估计


点估计

点估计
设θ是总体 X X X的未知参数,用统计量 θ ^ = θ ^ ( X 1 , X 2 , ⋅ ⋅ ⋅ X n ) \hat{θ}=\hat{θ}(X_1,X_2,···X_n) θ^=θ^(X1,X2,Xn)来估计θ,称 θ ^ \hat{θ} θ^为θ的估计量,对于样本的一组观察值 x 1 , x 2 , ⋅ ⋅ ⋅ x n x_1,x_2,···x_n x1,x2,xn,代入 θ ^ \hat{θ} θ^的表达式中所得到的具体数值称为θ的估计值,这样的方法称为参数的点估计。


矩估计
用样本矩去估计相应总体矩,或者用样本矩的函数去估计总体矩的同一函数的估计方法就是矩估计。
设总体 X X X的概率分布含有m个未知参数 θ 1 , θ 2 , ⋅ ⋅ ⋅ θ m θ_1,θ_2,···θ_m θ1,θ2,θm,假设总体的k阶原点矩存在,记 μ k = E ( X k ) ( k = 1 , 2 , ⋅ ⋅ ⋅ , m ) , A k = 1 n ∑ i = 1 n X i k \mu_k=E(X^k)(k=1,2,···,m),A_k=\frac{1}{n}\sum^n_{i=1}X^k_i μk=E(Xk)(k=1,2,,m)Ak=n1i=1nXik,为样本的k阶矩,令

         μ k ( θ 1 , θ 2 , ⋅ ⋅ ⋅ , θ m ) = A k ( k = 2 , 3 , ⋅ ⋅ ⋅ , m ) \mu_k(\theta_1,\theta_2,···,\theta_m)=A_k(k=2,3,···,m) μk(θ1,θ2,,θm)=Ak(k=2,3,,m).

则方程组的解 ( θ 1 , θ 2 ^ , ⋅ ⋅ ⋅ , θ m ^ ^ ) (\hat{\theta_1,\hat{\theta_2},···,\hat{\theta_m}}) (θ1,θ2^,,θm^^)称为参数 ( θ 1 , θ 2 , ⋅ ⋅ ⋅ , θ m ) (\theta_1,\theta_2,···,\theta_m) (θ1,θ2,,θm)的估计量,矩估计量的观察值称为矩估计值。


最大似然估计(极大似然估计)
(1)设总体 X X X的概率分布为 p ( x , θ ) p(x,\theta) p(x,θ)(当 X X X为连续型时,其为概率密度函数,当 X X X为离散型是,其为分布律), θ = ( θ 1 , θ 2 , ⋅ ⋅ ⋅ , θ m ) \theta=(\theta_1,\theta_2,···,\theta_m) θ=(θ1,θ2,,θm)为未知参数 x 1 , x 2 , ⋅ ⋅ ⋅ , x n x_1,x_2,···,x_n x1,x2,,xn为样本观察值。

         L ( x 1 , ⋅ ⋅ ⋅ , x 1 , θ ) = ∏ i = 1 n p ( x i ; θ ) = L ( θ ) L(x_1,···,x_1,\theta)=\prod^n_{i=1}p(x_i;\theta)=L(\theta) L(x1,,x1,θ)=i=1np(xi;θ)=L(θ),

称为 θ \theta θ的似然函数。

(2)对给定的 x 1 , ⋅ ⋅ ⋅ , x n x_1,···,x_n x1,,xn,使似然函数达到最大值的 θ ^ ( x 1 , ⋅ ⋅ ⋅ , x n ) \hat{\theta}(x_1,···,x_n) θ^(x1,,xn)称为 θ \theta θ的最大似然估计值,相应地 θ ^ ( X 1 , ⋅ ⋅ ⋅ , X n ) \hat{\theta}(X_1,···,X_n) θ^(X1,,Xn)称为 θ \theta θ的最大似然估计量。

(3)最大似然估计的常用求解方法,由于 l n L ( θ ) lnL(\theta) lnL(θ) L ( θ ) L(\theta) L(θ)有相同的最大值点,若 L ( θ ) L(\theta) L(θ)可导,则可由方程组

         ∂ l n L ( θ 1 , θ 2 , ⋅ ⋅ ⋅ , θ m ) ∂ θ i = 0 ( i = 1 , 2 , ⋅ ⋅ ⋅ , m ) \frac{\partial lnL(\theta_1,\theta_2,···,\theta_m)}{\partial \theta_i}=0(i=1,2,···,m) θilnL(θ1,θ2,,θm)=0(i=1,2,,m)

求出 θ i \theta_i θi的最大似然估计量,需注意的是这一方法并不是都有效的,对于有些似然函数,其驻点或导数不存在,这时应考虑其他方法求似然函数的最大值点。


估计量的评选标准

无偏性
X 1 , X 2 , ⋅ ⋅ ⋅ , X n X_1,X_2,···,X_n X1,X2,,Xn为来自总体 X X X的样本, θ ^ \hat{\theta} θ^ θ \theta θ的一个估计量,如果 E ( θ ^ ) = θ E(\hat{\theta})=\theta E(θ^)=θ成立,则称估计量 θ ^ \hat{\theta} θ^为参数 θ \theta θ的无偏估计。


有效性
θ ^ 1 \hat{\theta}_1 θ^1 θ ^ 2 \hat{\theta}_2 θ^2都为参数 θ \theta θ的无偏估计量,若 D ( θ ^ 1 ) ≤ D ( θ ^ 2 ) D(\hat{\theta}_1)≤D(\hat{\theta}_2) D(θ^1)D(θ^2),则称 θ ^ 1 \hat{\theta}_1 θ^1 θ ^ 2 \hat{\theta}_2 θ^2有效。
特别地,若对于 θ \theta θ的任一无偏估计 θ ^ \hat{\theta} θ^,有

         D ( θ ^ 1 ) ≤ D ( θ ^ ) D(\hat{\theta}_1)≤D(\hat{\theta}) D(θ^1)D(θ^)

则称 θ ^ 1 \hat{\theta}_1 θ^1 θ \theta θ的最小方差无偏估计(最佳无偏估计)。


一致性
θ ^ \hat{\theta} θ^为未知参数 θ \theta θ的估计量,若对任意给定的 ε > 0 \varepsilon>0 ε>0,都有

         lim ⁡ x → ∞ P { ∣ θ ^ − θ ∣ < ε } = 1 \lim_{x\rightarrow \infty}P\{|\hat{\theta}-\theta|<\varepsilon\}=1 limxP{θ^θ<ε}=1

θ ^ \hat{\theta} θ^依概率收敛于参数 θ \theta θ,则 θ ^ \hat{\theta} θ^称为 θ \theta θ的一致估计或相合估计。


区间估计

区间估计
θ \theta θ为总体的未知数, θ ^ 1 \hat{\theta}_1 θ^1,和 θ ^ 2 \hat{\theta}_2 θ^2均为估计量,若对于给定的a(0<a<1), 满足 P { θ ^ 1 ≤ θ ≤ θ ^ 2 } = 1 − a P\{\hat{\theta}_1≤\theta≤\hat{\theta}_2\}=1-a P{θ^1θθ^2}=1a,则称 [ θ ^ 1 , θ ^ 2 ] [\hat{\theta}_1,\hat{\theta}_2] [θ^1,θ^2] θ \theta θ的置信度为1-a的置信区间,通过构造一个置信区间对未知,参数进行估计的方法称为区间估计。


单个正态总体的区间估计
(1)当 σ 2 \sigma^2 σ2已知时, μ \mu μ的置信度为1-a的置信区间为

         [ X ˉ − σ n u a 2 , X ˉ + σ n u a 2 ] [\bar{X}-\frac{\sigma}{\sqrt{n}}u_{\frac{a}{2}},\bar{X}+\frac{\sigma}{\sqrt{n}}u_{\frac{a}{2}}] [Xˉn σu2a,Xˉ+n σu2a]  ( u u u为正态分布)

(2)当 σ 2 \sigma^2 σ2未知时, μ \mu μ的置信度为1-a的置信区间为

         [ X ˉ − S n t a 2 ( n − 1 ) , X ˉ + S n t a 2 ( n − 1 ) ] [\bar{X}-\frac{S}{\sqrt{n}}t_{\frac{a}{2}}(n-1),\bar{X}+\frac{S}{\sqrt{n}}t_{\frac{a}{2}}(n-1)] [Xˉn St2a(n1),Xˉ+n St2a(n1)]  ( S 2 S^2 S2为样本方差, t t t t t t分布)

(3)当 μ \mu μ已知时, σ 2 \sigma^2 σ2的置信度为1-a的置信区间为

         [ ∑ i = 1 n ( X i − μ ) 2 χ a 2 2 ( n ) , ∑ i = 1 n ( X i − μ ) 2 χ 1 − a 2 2 ( n ) ] [\frac{\sum_{i=1}^{n}(X_i-\mu)^2}{\chi^2_{\frac{a}{2}}(n)},\frac{\sum_{i=1}^{n}(X_i-\mu)^2}{\chi^2_{1-\frac{a}{2}}(n)}] [χ2a2(n)i=1n(Xiμ)2,χ12a2(n)i=1n(Xiμ)2]  ( χ 2 \chi^2 χ2 χ 2 \chi^2 χ2分布(卡方分布))

(4)当 μ \mu μ未知时, σ 2 \sigma^2 σ2的置信度为1-a的置信区间为

         [ ( n − 1 ) S 2 χ a 2 2 ( n − 1 ) , ( n − 1 ) S 2 χ 1 − a 2 2 ( n − 1 ) ] [\frac{(n-1)S^2}{\chi^2_{\frac{a}{2}}(n-1)},\frac{(n-1)S^2}{\chi^2_{1-\frac{a}{2}}(n-1)}] [χ2a2(n1)(n1)S2,χ12a2(n1)(n1)S2]  ( S 2 S^2 S2为样本方差, χ 2 \chi^2 χ2 χ 2 \chi^2 χ2分布(卡方分布))


双正态总体的区间估计

X X X~ N ( μ 1 , σ 1 2 ) N(\mu_1,\sigma_1^2) N(μ1,σ12) X 1 , X 2 , ⋅ ⋅ ⋅ X n 1 X_1,X_2,···X_{n_1} X1,X2,Xn1为其样本, Y Y Y~ N ( μ 2 , σ 2 2 ) N(\mu_2,\sigma_2^2) N(μ2,σ22) Y 1 , Y 2 , ⋅ ⋅ ⋅ , Y n 2 Y_1,Y_2,···,Y_{n_2} Y1,Y2,,Yn2为其样本,且 X X X Y Y Y独立。
(1) σ 1 2 , σ 2 2 \sigma_1^2,\sigma_2^2 σ12,σ22都为已知: μ 1 − μ 2 \mu_1-\mu_2 μ1μ2的1-a置信区间为

         [ X ˉ − Y ˉ − u a 2 σ 1 2 n 1 + σ 2 2 n 2 , X ˉ − Y ˉ + u a 2 σ 1 2 n 1 + σ 2 2 n 2 ] [\bar{X}-\bar{Y}-u_{\frac{a}{2}}\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}},\bar{X}-\bar{Y}+u_{\frac{a}{2}}\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}] [XˉYˉu2an1σ12+n2σ22 ,XˉYˉ+u2an1σ12+n2σ22 ]

(2) σ 1 2 , σ 2 2 \sigma_1^2,\sigma_2^2 σ12,σ22都为未知: μ 1 − μ 2 \mu_1-\mu_2 μ1μ2的1-a置信区间为

         [ X ˉ − Y ˉ − t a 2 ( γ ) S 1 2 n 1 + S 2 2 n 2 , X ˉ − Y ˉ + t a 2 ( γ ) S 1 2 n 1 + S 2 2 n 2 ] [\bar{X}-\bar{Y}-t_{\frac{a}{2}}(\gamma)\sqrt{\frac{S_1^2}{n_1}+\frac{S_2^2}{n_2}},\bar{X}-\bar{Y}+t_{\frac{a}{2}}(\gamma)\sqrt{\frac{S_1^2}{n_1}+\frac{S_2^2}{n_2}}] [XˉYˉt2a(γ)n1S12+n2S22 ,XˉYˉ+t2a(γ)n1S12+n2S22 ]

其中 γ = [ ( S 1 2 n 1 + S 2 2 n 2 ) 2 ( S 1 2 n 1 ) 2 n 1 − 1 + ( S 2 2 n 2 ) 2 n 2 − 1 ] \gamma=[\frac{(\frac{S_1^2}{n_1}+\frac{S_2^2}{n_2})^2}{\frac{(\frac{S_1^2}{n_1})^2}{n_1-1}+\frac{(\frac{S_2^2}{n_2})^2}{n_2-1}}] γ=[n11(n1S12)2+n21(n2S22)2(n1S12+n2S22)2](取整)
特殊情况
1) σ 1 2 , σ 2 2 \sigma_1^2,\sigma_2^2 σ12,σ22都为未知,但 n 1 , n 2 n_1,n_2 n1,n2较大时: μ 1 − μ 2 \mu_1-\mu_2 μ1μ2的1-a置信区间为

         [ X ˉ − Y ˉ − u a 2 S 1 2 n 1 + S 2 2 n 2 , X ˉ − Y ˉ + u a 2 S 1 2 n 1 + S 2 2 n 2 ] [\bar{X}-\bar{Y}-u_{\frac{a}{2}}\sqrt{\frac{S_1^2}{n_1}+\frac{S_2^2}{n_2}},\bar{X}-\bar{Y}+u_{\frac{a}{2}}\sqrt{\frac{S_1^2}{n_1}+\frac{S_2^2}{n_2}}] [XˉYˉu2an1S12+n2S22 ,XˉYˉ+u2an1S12+n2S22 ]

2) σ 1 2 = σ 2 2 = σ 2 \sigma_1^2=\sigma_2^2=\sigma^2 σ12=σ22=σ2未知: μ 1 − μ 2 \mu_1-\mu_2 μ1μ2的1-a置信区间为

         [ X ˉ − Y ˉ − t a 2 S ω 1 n 1 + S 2 2 n 2 , X ˉ − Y ˉ + t a 2 S ω 1 n 1 + S 2 2 n 2 ] [\bar{X}-\bar{Y}-t_{\frac{a}{2}}S_\omega\sqrt{\frac{1}{n_1}+\frac{S_2^2}{n_2}},\bar{X}-\bar{Y}+t_{\frac{a}{2}}S_\omega\sqrt{\frac{1}{n_1}+\frac{S_2^2}{n_2}}] [XˉYˉt2aSωn11+n2S22 ,XˉYˉ+t2aSωn11+n2S22 ]

其中 S ω 2 = ( n 1 − 1 ) S 1 2 + ( n 2 − 1 ) S 2 2 n 1 + n 2 − 2 S^2_\omega=\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2} Sω2=n1+n22(n11)S12+(n21)S22,t分布为(n_1+n_2-2)

3) μ 1 , μ 2 \mu_1,\mu_2 μ1,μ2已知: σ 1 2 σ 2 2 \frac{\sigma_1^2}{\sigma_2^2} σ22σ12的1-a置信区间为

         [ 1 n 1 ∑ i = 1 n 1 ( X i − μ 1 ) 2 1 n 2 ∑ j = 1 n 2 ( Y j − μ 2 ) 2 F 1 − a 2 ( n 2 , n 1 ) , 1 n 1 ∑ i = 1 n 1 ( X i − μ 1 ) 2 1 n 2 ∑ j = 1 n 2 ( Y j − μ 2 ) 2 F a 2 ( n 2 , n 1 ) ] [\frac{\frac{1}{n_1}\sum_{i=1}^{n_1}(X_i-\mu_1)^2}{\frac{1}{n_2}\sum_{j=1}^{n_2}(Y_j-\mu_2)^2}F_{1-\frac{a}{2}}(n_2,n_1),\frac{\frac{1}{n_1}\sum_{i=1}^{n_1}(X_i-\mu_1)^2}{\frac{1}{n_2}\sum_{j=1}^{n_2}(Y_j-\mu_2)^2}F_{\frac{a}{2}}(n_2,n_1)] [n21j=1n2(Yjμ2)2n11i=1n1(Xiμ1)2F12a(n2,n1),n21j=1n2(Yjμ2)2n11i=1n1(Xiμ1)2F2a(n2,n1)]  ( F F F F F F分布)


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值