决策树(一)

树模型

决策树:从根节点开始一步步走到叶子节点(决策)
所有的数据最终都会落到叶子节点,即可以做分类也可以做回归

树的组成

根节点:第一个选择点
非叶子节点与分支:中间过程
叶子节点:最终决策结果

决策树的训练与测试

训练阶段:从给定的训练集造出来一棵树(从跟节点开始选择特征,如何进行特征切分)
测试阶段:根据构造出来的树模型从上到下去走一遍就好了
一旦造好了决策树,那么分类或预测任务就很简单了,只需要走一遍就可以了,那么难点就在于如何构造出来一棵树,这就没那么容易了,需要考虑的问题还有很多的。

如何切分特征(节点)
通过一种衡量标准,来计算通过不同特征进行分支选择后的分类情况,找出来最好的那个当成根节点,以此类推。

衡量标准—熵

熵:熵是表示随机变量不确定性的度量(解释:说白了就物体内部的混乱程度,比如杂货超市什么都有,就很混乱,专门店里面只有一个牌子就很稳定)

公式: H ( X ) = − ∑ p i ∗ ㏒ 2 p i ( i = 1 , 2 , 3 ⋅ ⋅ ⋅ ) H(X)=-\sum p_i*㏒_2p_i (i=1,2,3···) H(X)=pi2pi(i=1,2,3)

eg:
以下有两个集合
A:{1,1,1,1,1,1,2,2}
B:{1,2,3,4,5,6,7,8}
显然A集合的熵要低,因为A里面只有两种类别,相对稳定一些,而B类别太多了,熵就会大很多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值