树模型
决策树:从根节点开始一步步走到叶子节点(决策)
所有的数据最终都会落到叶子节点,即可以做分类也可以做回归
树的组成
根节点:第一个选择点
非叶子节点与分支:中间过程
叶子节点:最终决策结果
决策树的训练与测试
训练阶段:从给定的训练集造出来一棵树(从跟节点开始选择特征,如何进行特征切分)
测试阶段:根据构造出来的树模型从上到下去走一遍就好了
一旦造好了决策树,那么分类或预测任务就很简单了,只需要走一遍就可以了,那么难点就在于如何构造出来一棵树,这就没那么容易了,需要考虑的问题还有很多的。
如何切分特征(节点)
通过一种衡量标准,来计算通过不同特征进行分支选择后的分类情况,找出来最好的那个当成根节点,以此类推。
衡量标准—熵
熵:熵是表示随机变量不确定性的度量(解释:说白了就物体内部的混乱程度,比如杂货超市什么都有,就很混乱,专门店里面只有一个牌子就很稳定)
公式: H ( X ) = − ∑ p i ∗ ㏒ 2 p i ( i = 1 , 2 , 3 ⋅ ⋅ ⋅ ) H(X)=-\sum p_i*㏒_2p_i (i=1,2,3···) H(X)=−∑pi∗㏒2pi(i=1,2,3⋅⋅⋅)
eg:
以下有两个集合
A:{1,1,1,1,1,1,2,2}
B:{1,2,3,4,5,6,7,8}
显然A集合的熵要低,因为A里面只有两种类别,相对稳定一些,而B类别太多了,熵就会大很多