模态分解 | EMD | EEMD | CEEMD | CEEMDAN | ICEEMDAN | VWD | LMD | EWT | DWT

经验模态分解(EMD)

为什么要用EMD

相比于时频处理方法小波分析的好处

  1. 克服了基函数无自适应性的问题。
    • 小波分析需要选某个小波基。即使小波基在全局可能是最佳的,但在某些局部可能不是,所以小波分析的基函数缺乏适应性。
  2. 对于一段未知信号,不需要做预先分析与研究,就可以直接开始分解。
    • 会自动按照一些固模式按层次分好,而不需要人为设置和干预。也就是说,EMD分解信号不需要事先预定或强制给定基函数,而是依赖信号本身特征而自适应地进行分解。

EMD就像一台机器,把一堆混在一起的硬币扔进去,它会自动按照1元、5毛、1毛、5分、1分地分成几份。

内涵模态分量(IMF)

内涵模态分量(Intrinsic Mode Functions, IMF)就是原始信号被EMD分解之后得到的各层信号分量。EMD的提出人黄锷认为,任何信号都可以拆分成若干个内涵模态分量之和。而内涵模态分量有两个约束条件

  1. 在整个数据段内,极值点的个数和过零点的个数必须相等或相差最多不能超过一个。
  2. 在任意时刻,由局部极大值点形成的上包络线和由局部极小值点形成的下包络线的平均值为零,即上、下包络线相对于时间轴局部对称。

例子:
在这里插入图片描述

EMD分解步骤

  1. 根据原始信号上下极值点,分别画出上、下包络线。
  2. 求上、下包络线的均值,画出均值包络线。
  3. 原始信号减均值包络线,得到中间信号。
  4. 判断该中间信号是否满足IMF的两个条件,如果满足,该信号就是一个IMF分量;如果不是,以该信号为基础,重新做1~4 的分析。IMF分量的获取通常需要若干次的迭代。
  5. 使用上述方法得到第一个IMF1后,用原始信号减IMF1,作为新的原始信号,再通过1~4 的分析,可以得到IMF2,以此类推,完成EMD分解。

IMF的物理含义

IMF的各个分量分别代表了原始信号中的各频率分量,并按照从高频到低频的顺序依次排列。除此之外还有的分量,它们没有意义,属于EMD端点效应等带来的副作用。

集合经验模态分解(EEMD)

EEMD方法出自:Ensemble empirical mode decomposition: a noise-assisted data analysis method

EEMD的概念

主要是解决EMD方法中的模态混叠现象。

模态混叠,是不同模态的信号混叠在一起,一般有两种情况:一是不同特征尺度的信号在一个IMF分量中出现,另一种是同一个特征尺度的信号被分散到不同的IMF分量中。

EEMD的改进思路

利用白噪声均值为0的特性,通过在分解的过程中多次引入均匀分布的白噪声,将信号本身的噪声通过多次人为添加的噪声掩盖过去,从而得到更加精准的上下包络线。同时对分解结果进行平均处理,平均处理次数越多,噪声给分解带来的影响就越小。

EEMD分解主要步骤

  1. 设定原始信号的处理次数m。
  2. 给这m个原始信号分别添加随机白噪声,组成一系列新的信号。
  3. 对这一系列的新信号分别进行EMD分解,得到一系列的IMF分量。
  4. 对相应模态的IMF分量分别求均值,得到EEMD分解结果。

流程图:
在这里插入图片描述

相较于EMD的(几乎)无参数傻瓜式自适应分解,EEMD就有一些参数需要调试了:分别是用于平均处理的次数M添加的白噪声的幅值。其中白噪声的幅值通常用“白噪声幅值的标准差与原始信号幅值标准差之比”来表征。

互补集合经验模态分解(CEEMD)

CEEMD方法出自:Complementary Ensemble Empirical Mode Decomposition: a Novel Noise Enhanced Data Analysis Method

CEEMD的概念

CEEMD针对EEMD的“残余辅助噪声”问题。

残余辅助噪声,因为EEMD的前提是认为“多组白噪声的叠加近似等于0”。然而当处理的次数不够多的时候,白噪声往往不能被降低到忽略不计的程度。如果使用EEMD方法时想要获得残余噪声较小的结果,就需要增加平均处理的次数,这样无疑会增加计算量。

CEEMD的改进思路

  1. 将一对互为相反数的正负白噪声作为辅助噪声加入源信号当中,以消除原来 EEMD 方法分解后重构信号当中残留的多余的辅助白噪声,同时减少分解时所需的迭代次数,降低计算成本。

  2. 与EEMD相比,CEEMD的区别仅仅在于添加白噪声的方式上。EEMD添加的是相互独立的白噪声;CEEMD添加的是成对的、互为相反数的白噪声序列。

残余噪声对比图

  • EEMD方法的重构残余量

在这里插入图片描述

  • CEEMD方法的重构残余量

在这里插入图片描述

可以看出CEEMD方法的残余辅助噪声比EEMD要低十几个数量级。Yeh展示了在某段信号下两种方法处理后的白噪声残余随叠加次数M的变化趋势(下图),EEMD方法要在将近10000次累加之后才能将残余量降到CEEMD方法的水平,而CEEMD则在个位数的处理次数下就能达到这个水平。

在这里插入图片描述

CEEMD的优越性:

  1. 相同的累加次数下,CEEMD的白噪声残余更小。
  2. CEEMD使用更少的计算资源(即更小的累加次数)即可得到理想的分解结果。

自适应噪声完备集合经验模态分解(CEEMDAN)

CEEMDAN论文出自:A complete ensemble empirical mode decomposition with adaptive noise

CEEMDAN的概念

EEMD方法是将添加白噪声后的M个信号直接做EMD分解,然后相对应的IMF间直接求均值。

CEEMDAN方法是, 每求完一阶IMF分量,又重新给残值加入白噪声(或白噪声的IMF分量)并求此时的IMF分量均值,并逐次迭代。

方法流程图:

在这里插入图片描述

CEEMDAN的改进思路

  1. 如果最终rk也算一个IMF分量的话,上图总共分解出了K+1个IMF分量。
  2. 图中Ek(∗)为利用EMD算法产生的第k阶IMF分量,所以每次迭代添加都是最初始的那些白噪声的IMF分量(第一次迭代添加的是原始白噪声)。
  3. 优势:
    • 完备性,即把分解后的各个分量相加能够获得原信号的性质。CEEMDAN在较小的平均次数下就可以有很好的完备性;而对于EEMD方法,较小的平均次数会导致较差的完备性,也即CEEMD那篇文章里提到的重构误差会很大。
    • 更快的计算速度,正是由于上一条,相较于EEMD该方法不需要太多的平均次数,可以有效提升程序运算速度。
    • 更好的模态分解结果,EEMD分解可能会出现多个幅值很小的低频IMF分量,这些分量对于信号分析意义不大,CEEMDAN方法可以减少这些分量数目。

改进的自适应噪声完备集合经验模态分解(ICEEMDAN)

ICEEMDAN论文出自:Improved complete ensemble EMD: A suitable tool for biomedical signal processing

ICEEMDAN的概念

引入两个算子:

  1. 算子Ej(·):代表求一个信号EMD分解的第j个IMF分量。
  2. 算子Ej(·):代表求信号的局部均值。这里的局部均值是什么含义呢,在EMD分解的过程中是不断地(1)求信号的上下包络线均值→(2)原始信号减掉均值包络线→(3)反复迭代直至信号满足两个约束条件,此时就得到了一个IMF分量,而局部均值指的就是“原始信号减去此IMF得到的部分”。

ICEEMDAN的流程图

在这里插入图片描述

  1. 上图中的 𝑤(𝑖)[𝑛] 指的是加入的第i组高斯白噪声,所以在每轮求IMF过程中,所加入的噪声信号都是原始噪声信号的IMF分量。

  2. 上图中的 𝜀𝑗 指的是加入噪声分量时所乘的系数,该系数代表的是加入噪声的信噪比与该噪声分量标准差之比。换句话说, 𝜀𝑘𝐸𝑘+1(𝑤𝑖[𝑛]) 代表的是第i组高斯白噪声的第k个分量,乘以添加噪声相对于原信号的信噪比,再除以这组高斯白噪声的标准差。其中添加噪声相对于原信号的信噪比将是ICEEMDAN程序的入口参数之一,另外还有一个入口参数就是总共添加的白噪声组数。

    相对于CEEMDAN方法以及之间介绍的几种算法,ICEEMDAN的主要优势在于更少的伪模态。论文中举了一个例子作为对比:

    从左到右分别是EMD、EEMD、CEEMD、CEEMDAN、ICEEMDAN,可以看出ICEEMDAN方法,能够看出确实减少了很多不必要的分量。

在这里插入图片描述

变分模态分解(VMD)

VWD论文出自:Variational mode decomposition

VMD的概念

该方法假设任何的信号都是由一系列具有特定中心频率、有限带宽的子信号组成(即IMF)。
以经典维纳滤波为基础,通过对变分问题进行求解,得到中心频率与带宽限制,找到各中心频率在频域中对应的有效成分,得到模态函数。其模型构建涉及到维纳滤波、希尔伯特变换和解析信号等知识点。

VMD 的分解过程

主要包括变分问题的构造变分问题的求解

(1)要求每个模态分量中心频率的带宽之和最小;(2)所有的模态分量之和等于原始信号。

内涵模态分量

该内涵模态分量被定义为调幅调频的分量模态函数,数学表达式为:
在这里插入图片描述
该函数表征的分量也是同样满足EMD的约束条件的。

变分问题构造

所谓变分问题,就是求泛函的极值。在VMD中,泛函指的是VMD约束变分模型,而要求的极值,就是“每个模态分量中心频率的带宽之和最小”。

过去常遇到的是求函数极值,但有时我们需要对自变量也是函数的特殊函数求极值。

这种特殊函数即“函数的函数”,称为泛函,求泛函的极值问题称为变分问题。

构造出来的VMD约束变分模型是这样的:
在这里插入图片描述

变分问题求解

应用到了比较多的数学工具,包括二次惩罚项、拉格朗日算子以及增广拉格朗日函数等等。

VWD的特点

VMD思路

VMD方法是一种非递归变分模式的信号分解方法,其整体框架为一个变分问题。

VMD的独特优势

  1. 可以指定想要得到的模态数。
  2. 通过VMD方法分解出来的IMF都具有独立的中心频率,并且在频域上表现出稀疏性的特征,具备稀疏研究的特质。
  3. 在对IMF求解过程中,通过镜像延拓的方式避免了类似EMD分解中出现的端点效应。
  4. 有效避免模态混叠(K值选取合适的情况下)。

VMD的重要参数——模态数K

信号在做VMD分解前,需要先设定模态分量的个数K。

若设定的K小于待分解信号中有用成分的个数(欠分解),会造成分解不充分,导致模态混叠;若设定的K值大于待分解信号中有用成分的个数(过分解),就导致产生一些没有用的虚假分量。因此,K值的确定对于VMD就非常重要。

确定K值需要考虑的方面

  1. 某些场景下可以预知模态数目,比如对于某齿轮箱振动数据,通过分析可知信号数据中主要包含齿轮的啮合频率和主轴转动频率,那么K可以设置为2。
  2. 可以通过K值从小到大逐个尝试,并结合分解结果分析确定K值:随着K值增大各主要频率段数据能分布到不同IMF分量中,并且没有产生虚假分量,此时K值就是比较合适的。
  3. 可以使用一些辅助算法,比如使用峭度最大原理、能量差值原则等,或者结合一些寻优算法对K值(也可以同时对α)寻优。

VMD的重要参数——惩罚系数α

VMD 分解的过程中,预设的 K 值决定着 IMF 分量的个数,惩罚系数 α 决定着 IMF 分量的带宽。惩罚系数越小, 各 IMF 分量的带宽越大,过大的带宽会使得某些分量包含其他分量信号;α值越大,各IMF分量的带宽越小,过小的带宽是使得被分解的信号中某些信号丢失。该系数常见取值范围为1000~3000。

VMD的另一个参数——收敛容差tol

是优化的停止准则之一,即在连续两次迭代中,当向 IMF 收敛的绝对平均平方改进小于 tol时,优化停止。通常可以取 1e-6~5e-6。

局部均值分解(LMD)

LMD论文出自:The local mean decomposition and its application to EEG perception data

本质上是根据信号的包络特征自适应地将一个非线性、非平稳信号按频率递减的顺序逐级分离。LMD的提出也是用来解决EMD分解的端点效应和模态混叠问题,最开始是用来处理脑电数据的。

LMD的概念

与EMD衍生的一系列方法不同,经过LMD分解得到的分量被称作“乘积函数(PF)”,即每个PF都是通过包络函数乘以纯调频函数得到的。其中包络函数是PF的瞬时幅值,纯调频函数的频率是PF的瞬时频率。

LMD的特点

LMD和EMD的区别

  1. PF 分量和 IMF 分量的含义不相同。经过 EMD 分解后获得的 IMF 属于调频信号,而利用 LMD 分解后获得的 PF 分量属于调幅调频信号。要想得到 IMF 分量,必须保证原始信号极值点的数量绝对等于过零点的数量,或者两个数值的数值差的结果小于等于 1,因此 IMF 分量并不会显现出不过零点的局部波动;但 PF并不需要满足这个条件。综合上所述可以发现 PF 分量能够更准确的反映原始信号的所有特征信息。
  2. 针对局部均值函数 EMD 和 LMD 的求解方法存在明显的差异。EMD 是分别对所有极值点采用三次样条插值获得原始信号的上包络线和下包络线,接下来使用平均值的方法就可以得到局部均值函数,采用这种方法更容易形成过包络或欠包络等缺陷;对于LMD 求解局部均值函数,求取相邻两个极值的平均值,并利用滑动平均算法对其进行平滑处理;LMD 能够避免 EMD 中存在的过包络和欠包络的缺点。因此通过对比可以发现LMD 的分解结果更加准确。
  3. LMD 和 EMD 对瞬时频率的求解思路不同。在 EMD 中,必须求解 Hilbert 才能获得 IMF 的瞬时频率,然后再利用对其瞬时相位的求取倒数,最终获得瞬时频率,当若干个 IMF 中的一个瞬时相位具有突变的时候,求解出来的瞬时频率可能会出现工程实际中难以解释的负值;但对于 LMD 则不会出现频率为负值的情况,因为瞬时频率的值可以直接通过分解后的 PF 分量直接计算得到,这种方法不但简单而且求出的瞬时频率值都属于正值。因此求解瞬时频率的时候 LMD 方法更占优势。
  4. LMD 和 EMD 的整个分解过程计算量有所不同。针对 EMD 的求解过程主要存在两个迭代过程,一个是获取所需要的若干个 IMF 分量,另一个则是将所有的 IMF 从原始信号中分离出来,最终得到一个残余分量;而 LMD 方法就相对于 EMD 复杂一些,其主要包含了三个迭代过程,第一个迭代是利用滑动平均算法对局部均值和局部包络的折线进行平滑处理,得到局部均值函数以及包络估计函数,第二个迭代是通过迭代过程获得一个纯调频函数,第三个迭代就是将所有的 PF 分量全部计算出来。针对计算量来说,LMD的并不占优势,其计算量相比于 EMD 稍大一些。

经验小波变换(EWT)

EWT的概念

EWT对信号的频谱进行分割划分,构建合适的小波滤波器组,对信号进行分解

其分解过程大致如下:

  1. 计算输入信号的傅里叶变换。
  2. 将傅里叶频谱划分为N个连续段落,通过搜索频谱的局部极大值确定边界,并将其按降序进行排列,假设极大值个数为 M,当 M ≥N 时,保留前N-1个极大值,当 M<N时,保留全部极大值并对N进行修正,最后,取两个局部极大值间的中间频率作为ωn。
  3. 找到分割边界并分割频谱。
  4. 构建合适的小波滤波器组,对信号进行分解。

离散小波变换(DWT)

一、小波分析(CWT)到小波分解

为了减少变换运算量,去除不必要的重复的系数,实际中使用的通常是离散小波变换

在离散小波变换中,“离散”的就是尺度参数(表征频率)和位移参数(表征时间)。

小波分解多个尺度视角

小波分解的多尺度可以类比为我们使用不同的“放大镜”去观察一个物体。想象一下你手里有一张非常复杂的画,画面上有大的物体,如山脉、树木,但也有非常细小的细节,如叶子上的纹理或昆虫的触角。
粗尺度(低分辨率):当你使用低倍的放大镜(或者站得很远)去看这幅画时,你可以看到大的物体,如山脉和树木,但可能看不到细小的纹理或昆虫。在小波分解中,这就像我们查看信号的低频部分,捕获其主要的、宽泛的特征。
细尺度(高分辨率):现在,如果你换一个高倍的放大镜(或者走近一些)去看同一幅画,你可能会失去对整体的感知,但可以清晰地看到叶子上的纹理或昆虫的触角等细节。在小波分解中,这就像我们查看信号的高频部分,捕获其细节和快速的变化。
小波分解的美妙之处在于,它同时提供了多个尺度的视角,让我们既可以看到信号的整体特征,又可以看到其细节。这就像我们可以同时拥有多个不同倍率的放大镜,让我们在需要的时候选择合适的一个来观察画面。

二、DWT小波分解的理解

DWT小波分解和“其他类EMD分解方法”的区别

小波分解的分解结构是有包含关系的,每一层级的近似信号都要再分解为下一级的近似信号和细节信号。

DWT主要低频信号出现在每一个近似信号里:

在这里插入图片描述

对比EMD分解,每个IMF分量都是由原始信号直接分解而来:

EMD通过连续地提取信号的局部极值,然后求解其上下包络,进而得到IMFs。这些IMFs是并列的关系,可以直接对选定的分量进行相加来实现重构。

在这里插入图片描述

DWT的特点

  1. 小波分解方法是多尺度的,高频分量在多个层级上被逐步细化剥离开来,让我们可以用更精准的手术刀切割出特征信号段,这是EMD所不具备的特点。
  2. EMD可能会受到模态混叠的影响,导致不同模式的信号成分被混在一起;小波分解方法不同层级覆盖的频率范围不同,模态混叠现象会大大减少。
  3. EMD的分解阶数是自适应的,换句话说无法人为干预;小波分解的分解层数是可以指定的,这方面灵活性更强。

参考资料:

与信号处理有关的那些东东

  • 36
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值