经验模态分解(EMD)
为什么要用EMD
相比于时频处理方法小波分析的好处
- 克服了基函数无自适应性的问题。
- 小波分析需要选某个小波基。即使小波基在全局可能是最佳的,但在某些局部可能不是,所以小波分析的基函数缺乏适应性。
- 对于一段未知信号,不需要做预先分析与研究,就可以直接开始分解。
- 会自动按照一些固模式按层次分好,而不需要人为设置和干预。也就是说,EMD分解信号不需要事先预定或强制给定基函数,而是依赖信号本身特征而自适应地进行分解。
EMD就像一台机器,把一堆混在一起的硬币扔进去,它会自动按照1元、5毛、1毛、5分、1分地分成几份。
内涵模态分量(IMF)
内涵模态分量(Intrinsic Mode Functions, IMF)就是原始信号被EMD分解之后得到的各层信号分量。EMD的提出人黄锷认为,任何信号都可以拆分成若干个内涵模态分量之和。而内涵模态分量有两个约束条件:
- 在整个数据段内,极值点的个数和过零点的个数必须相等或相差最多不能超过一个。
- 在任意时刻,由局部极大值点形成的上包络线和由局部极小值点形成的下包络线的平均值为零,即上、下包络线相对于时间轴局部对称。
例子:
EMD分解步骤
- 根据原始信号上下极值点,分别画出上、下包络线。
- 求上、下包络线的均值,画出均值包络线。
- 原始信号减均值包络线,得到中间信号。
- 判断该中间信号是否满足IMF的两个条件,如果满足,该信号就是一个IMF分量;如果不是,以该信号为基础,重新做1~4 的分析。IMF分量的获取通常需要若干次的迭代。
- 使用上述方法得到第一个IMF1后,用原始信号减IMF1,作为新的原始信号,再通过1~4 的分析,可以得到IMF2,以此类推,完成EMD分解。
IMF的物理含义
IMF的各个分量分别代表了原始信号中的各频率分量,并按照从高频到低频的顺序依次排列。除此之外还有的分量,它们没有意义,属于EMD端点效应等带来的副作用。
集合经验模态分解(EEMD)
EEMD方法出自:Ensemble empirical mode decomposition: a noise-assisted data analysis method
EEMD的概念
主要是解决EMD方法中的模态混叠现象。
模态混叠,是不同模态的信号混叠在一起,一般有两种情况:一是不同特征尺度的信号在一个IMF分量中出现,另一种是同一个特征尺度的信号被分散到不同的IMF分量中。
EEMD的改进思路
利用白噪声均值为0的特性,通过在分解的过程中多次引入均匀分布的白噪声,将信号本身的噪声通过多次人为添加的噪声掩盖过去,从而得到更加精准的上下包络线。同时对分解结果进行平均处理,平均处理次数越多,噪声给分解带来的影响就越小。
EEMD分解主要步骤
- 设定原始信号的处理次数m。
- 给这m个原始信号分别添加随机白噪声,组成一系列新的信号。
- 对这一系列的新信号分别进行EMD分解,得到一系列的IMF分量。
- 对相应模态的IMF分量分别求均值,得到EEMD分解结果。
流程图:
相较于EMD的(几乎)无参数傻瓜式自适应分解,EEMD就有一些参数需要调试了:分别是用于平均处理的次数M、添加的白噪声的幅值。其中白噪声的幅值通常用“白噪声幅值的标准差与原始信号幅值标准差之比”来表征。
互补集合经验模态分解(CEEMD)
CEEMD方法出自: