一、模态分解算法===============EMD算法介绍
(一)模态分解相关的算法有以下几类
IMF 固有模态函数\EMD经验模态分解\EEMD集合经验模态分解\CEEMD 互补集合经验\(EEMD的标准形式)CEEMDAN自适应噪声完备集合经验模态分解\VMD 变分模态分解
(二)本篇主要介绍EMD算法
IMF的定义:将待研究的信号分解为一个个单分量信号,每一个单分量信号只包含一种振荡模式(即单一的瞬时频率),这些分解后的分量称为固有模态函数
满足两点要求
1)极值点和过零点的数目应该相等,或者最多差一个
2)局部最大和局部最小的上下包络线均值为零
这两点要求是必要非充分条件,也就是IMF一定满足上面两个条件,但是满足上面两个条件的不一定是IMF。
(三)EMD的步骤
1)对信号x(t),找出局部最大值和局部最小值点
2)再利用三次样条函数分别对这些局部最大值和局部最小值点进行插值得到x(t)的上包络线u(t)和下包络线l(t),获取上下包络线的均值
m(t) = [u(t)+l(t)]/2,则m(t)为上下包络线