模态分解算法 EMD、EEMD、CEEMD

文章介绍了模态分解算法,重点讨论了EMD、EEMD和CEEMD。EMD用于将信号分解为固有模态函数(IMF),但存在模式混叠问题。EEMD通过添加白噪声解决此问题,但增加计算量和噪声残留。CEEMD进一步优化,通过加减白噪声抵消噪声,减少平均次数和噪声影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、模态分解算法===============EMD算法介绍

(一)模态分解相关的算法有以下几类

IMF 固有模态函数\EMD经验模态分解\EEMD集合经验模态分解\CEEMD 互补集合经验\(EEMD的标准形式)CEEMDAN自适应噪声完备集合经验模态分解\VMD 变分模态分解

(二)本篇主要介绍EMD算法

IMF的定义:将待研究的信号分解为一个个单分量信号,每一个单分量信号只包含一种振荡模式(即单一的瞬时频率),这些分解后的分量称为固有模态函数

满足两点要求

1)极值点和过零点的数目应该相等,或者最多差一个

2)局部最大和局部最小的上下包络线均值为零

这两点要求是必要非充分条件,也就是IMF一定满足上面两个条件,但是满足上面两个条件的不一定是IMF。

(三)EMD的步骤

1)对信号x(t),找出局部最大值和局部最小值点

2)再利用三次样条函数分别对这些局部最大值和局部最小值点进行插值得到x(t)的上包络线u(t)和下包络线l(t),获取上下包络线的均值

m(t) = [u(t)+l(t)]/2,则m(t)为上下包络线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值