Convolutional Pose Machines 阅读小结

Title: Convolutional Pose Machines

Authors: Shih-En WeiVarun RamakrishnaTakeo KanadeYaser Sheikh

Link: https://arxiv.org/abs/1602.00134

Github: https://github.com/CMU-Perceptual-Computing-Lab/convolutional-pose-machines-release

或者原作者 https://github.com/shihenw/convolutional-pose-machines-release (这个更完善)


What:

1. 对人体的结构进行预测,以预测点的形式输出。

2. 使用多个multi-class CNN构建 coarse2fine的框架(不是regression CNN),所以操作都是基于heatmap。


How:

1.Stage 1 input是原图,经过全卷机网络,输出是一个P+1层的2Dmap

   Stage 2 input是 StageOutput做处理,并且加上 原图通过几层网络后的中层map。输出同上。

   Stage t>2 类似2

(这里相加的话会有一些尺度问题,应该是ψ中操作了,但论文中没有解释ψ。)


2.出现梯度消失的问题:采用中层监督(加入中层loss),加强反向传播。

中层监督的groundtruth来源于对groundtruth中的location point做高斯分布产生。而Loss的形式是简单的每个像素的平方loss。


实验

组建之间可以互相影响(multi task的感觉)


结果


update 9/20:

网络结构可视化分析:(我是用了caffe/python/drawnet.py可视化)

1.这个是作者提供test的结构,所以图上没有loss。但按照paper应该是在

conv7_stage1 和之后的每个conv5上有loss (如 Mconv5_stage2, Mconv5_stage3 )

2.一开始分叉出去3路,

第一路可以对应 x‘ 的那一路。这一路就是常驻的用来concat的。

中间的一路就是x的一路。这一路就是一开始和x‘一样,后期疯狂 conv [11,11] pad 5的尺度不变

下面的一路是原图缩小8倍的一路。这一路也是常驻的用来concat的。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Layumi1993

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值