如何借助DeepSeek、ChatGPT等AI模型构建自己的量化交易策略?

春节期间,deepseek非常火爆,1月初我也开始使用了(如下图右半部分),同时从2023年开始也一直在使用chatgpt(如下图左半部分),前前后后至少进行了上千次的沟通。

其他的AI模型,比如通义千问、kimi、文心一言等,在量化投资和编程方面,还有提升的空间,可以暂且不用。

今天试着以量化投资的角度,对两者进行一下使用体验分享,是否有必要本地部署deepseek?如何借助这些优秀的模型构建自己的量化交易策略,希望对大家有所帮助。

很多网友在网上评论“试试能否把幻方的老底问出来”,有人回答“已经问了,但是deepseek不告诉我”,今天我们就试试,看能否问到不错的策略。

我的问题如下:
“我是一个做国内商品期货的散户,想要一个高胜率,高盈亏比的日内趋势型策略,资金在 10 万左右,请帮我设计一下”

如果稍微有些量化基础的朋友,应该能发现上面问题的存在矛盾的地方,我们看看deepseek如何回答


单单从上面两张截图的回答来看,对量化交易涉及的几个重要环节都有所提及,如果你是一个量化小白,看看这段文字也能有所收获。

回答还没结束,后面内容截图的话比较长,我以文字形式放到下文中

针对您的需求,我为您设计一个以高流动性和高波动性品种为核心的日内趋势策略。以下是经过优化的方案框架:

一、品种选择(关键要素)

  1. 优选品种:螺纹钢(RB)、甲醇(MA)、PTA、豆粕(M)
  2. 选择逻辑:
    • 日均成交量>50万手(确保流动性)
    • 波动率>1.5%(保证日内空间)
    • 保证金<3万/手(10万资金可操作3手)
    • 手续费率<0.1‰(降低成本)

二、核心交易逻辑(三重过滤体系)

  1. 趋势判定层(30分钟周期)

    • EMA12上穿EMA26且价格>EMA60 → 多头市场
    • EMA12下穿EMA26且价格<EMA60 → 空头市场
  2. 入场信号层(5分钟周期)

    • 多头信号:MACD(12,26,9)金叉 + 价格突破布林带中轨
    • 空头信号:MACD死叉 + 价格跌破布林带中轨
    • 附加条件:成交量较前3根K线均值放大20%
  3. 风险过滤层

    • 开盘30分钟内不交易(09:00-09:30)
    • 价格处于前日结算价±1.5%区间外不交易
    • 持仓量骤减>15%时放弃交易

三、资金管理系统

# 以螺纹钢为例(保证金约4000元/手)
account = 100000
risk_per_trade = 0.02  # 单笔风险2%
stoploss = 10  # 10个点止损
point_value = 10  # 每点价值

position_size = (account * risk_per_trade) / (stoploss * point_value)
# 计算结果:3手(实际交易2手留安全边际)

四、动态止盈止损机制

  1. 初始止损:固定10个点(约0.3%)
  2. 移动止盈:
    • 盈利达15点后,止损移至成本+2点
    • 盈利达30点后,止损移至盈利20点
    • 价格突破日内极值后,启动3倍ATR跟踪止盈

五、特殊时段处理

时间段策略调整
09:00-09:30仅观察不交易
10:15-10:30减仓50%
14:30后只平仓不开新仓
交割日前3天切换至次主力合约

六、风险控制

  1. 单日最大亏损:总资金3%(3000元)
  2. 连续2日亏损:强制休市1天
  3. 保证金使用率>60%时:禁止新开仓
  4. 重大数据公布日(如CPI数据):仓位减半

七、实战注意事项

  1. 优先交易10:00-11:30和13:30-14:30时段
  2. 每笔交易记录必须包含:
    • 入场依据(哪三个条件同时触发)
    • 持仓时间(最长不超过2小时)
    • 实际滑点(超过2个点需调整品种)
  3. 每周统计:
    • 胜率(目标55%-60%)
    • 盈亏比(目标1.8:1以上)
    • 日均交易次数(控制3次以内)

八、辅助工具推荐

  1. 文华财经wh8:实现条件单自动止损
  2. 交易开拓者:进行多品种监控
  3. 手工记录表:强制进行交易复盘

该策略经过2020-2023年螺纹钢主力合约回测,年化收益率约80-120%,最大回撤15%。建议先用模拟盘验证1个月,熟悉信号识别和止损执行后再实盘操作。注意不同品种参数需微调(如化工品止损可放大至15点)。保持策略一致性是获得正期望值的关键。

看到这里,你觉得deepseek给出的这个策略如何?回答的是否专业?接下来我们看看同样的问题,ChatGPT如何回答。

大家可以对比下两者的回答,很明显deepseek的回答会更专业一些,不愧是出自量化巨头幻方,因为deepseek有历史数据,也给出了历史回测结果,但是ChatGPT没有。

到这里还没有结束,deepseek虽然给出了具体的策略,也给出来回测结果,看似是个不错的策略,但对于一般的量化爱好者,没有编程经验,对该策略进行验证及应用还是比较困难的。

有个比较简单的方式,就是将上述的入场点标记在第三方商业行情终端上,因为该策略用到的技术指标也比较简单:EMA/MACD/BOLL,都是比较常见的指标,可以借助通达信公式进行BS点标记。

不会写通达信公式?没关系,我们接着问,后面就只以deepseek的回答进行分享了,因为chatgpt给出的公式运行会出错。

为了方便起见,我们将上面的策略进行简化,同时我们只关注一个级别的行情k线,标记做多或者做空的入场点,也就是常说的BS点。

我们直接把deepsek给出通达信公式放到第三方软件的指标公式中,新建一个指标

看看效果,下图的“S”点标记的还是很准确的,满足上面的要求

到这一步,如果你认可该策略,结合BS点的提示,可以跟踪观察一段时间看看效果。

如果需要完整的实现上面的策略,对编程能力就有一定的要求了,大家可以自行与AI模型进行交流沟通,比如让deepseek将上述完成策略,转化成聚宽平台代码,或者通达信公式代码,然后再不同平台进行回测验证。

下一个问题,是否有必要本地部署deepseek?

我的回答是不需要,因为本地安装的回答比较拉胯,请看下图。

还有一些更无厘头的回答,甚至违背常识,这里就不举例了,避免误导大伙。

最后的结论就是,可以把这些AI模型当成是高智商的婴幼儿,如果你在某个领域有一定的经验和专业度,那么你会将它训练的越来越专业,就比如幻化在量化界的专业度,训练出来的deepseek模型,如果你有一定的量化基础,那么你会慢慢发现它的优势所在。

<think>好的,我现在需要解决用户在使用langchain4j工具时遇到的流式响应执行错误。首先,我得了解langchain4j的基本情况,它是一个Java的LangChain实现库,用于构建基于大语言模型的应用程序。用户提到的问题是关于工具(tools)中的流式响应执行错误,因此需要先明确错误的具体表现和上下文。 首先,我应该回忆一下类似的问题处理经验。比如,在LangGraph中,异步和流处理是关键特性,可能涉及到任务调度、数据流管理等问题[^1]。用户提到的流式响应可能涉及数据流的异步处理,而执行错误可能与线程管理、资源释放或数据流中断有关。 接下来,我需要考虑常见的流式处理错误原因。根据Flink处理流数据的经验,性能指标如延迟、吞吐量、记录处理和GC暂停都可能影响流式任务的稳定性[^2]。虽然Flink和langchain4j是不同的框架,但流处理的共性问题可能存在相似之处,比如资源竞争、背压(backpressure)处理不当,或者异步回调未正确实现。 然后,我需要针对langchain4j的具体情况进行分析。可能的错误原因包括: 1. **流式响应配置错误**:检查是否正确配置了流式处理相关的参数,比如超时设置、缓冲区大小或异步回调函数。 2. **线程管理问题**:流式处理通常涉及多线程或异步任务,如果线程池配置不当,可能导致资源耗尽或任务阻塞。 3. **依赖版本不兼容**:检查langchain4j及其相关依赖(如HTTP客户端、异步库)的版本是否兼容,是否存在已知的bug。 4. **网络或IO异常**:流式响应可能需要维持长连接,网络波动或服务器中断可能导致错误。 5. **数据处理逻辑错误**:在流式处理过程中,数据处理逻辑可能有错误,比如未正确处理分块数据或未及时关闭流。 接下来,我应该思考如何验证这些可能性。例如,用户可以通过日志或堆栈跟踪定位错误发生的具体位置。如果是配置问题,查看相关配置项是否正确;如果是线程问题,检查线程池的使用情况和资源监控;如果是依赖问题,查看官方文档或社区是否有关类似问题的报告。 此外,参考LangGraph的异步和流处理机制,可能需要确保流式响应的生命周期管理正确,比如及时释放资源或处理取消信号[^1]。在代码层面,可能需要检查是否正确实现了流式回调接口,是否有未捕获的异常导致流程中断。 最后,总结解决方案步骤:确认错误日志、检查配置和依赖、验证线程和资源管理、确保正确处理流数据块、测试网络稳定性。如果问题依旧,可能需要查阅langchain4j的官方文档或社区支持,寻求更具体的帮助。</think>针对langchain4j工具中流式响应执行错误的解决方案,请按照以下步骤排查: ### 一、基础配置检查 1. **版本兼容性验证** - 确认使用的langchain4j版本与Java版本匹配(最低要求Java 11) - 检查依赖管理工具中是否存在冲突库: ```xml <dependency> <groupId>dev.langchain4j</groupId> <artifactId>langchain4j-openai</artifactId> <version>0.27.0</version> <!-- 最新稳定版 --> </dependency> ``` 2. **流式配置参数** - 检查OpenAI客户端配置是否启用流式模式: ```java OpenAiStreamingChatModel model = OpenAiStreamingChatModel.builder() .apiKey("sk-...") .modelName("gpt-4") .temperature(0.7) .logStreaming(true) // 启用流式日志 .build(); ``` ### 二、异步处理验证 1. **线程池配置**(参考LangGraph异步处理机制) ```java ExecutorService executor = Executors.newFixedThreadPool(10); // 根据业务需求调整 StreamingResponseHandler handler = new StreamingResponseHandler() { @Override public void onNext(String token) { // 保证线程安全操作 } @Override public void onError(Throwable error) { error.printStackTrace(); // 必须实现错误处理 } }; ``` 2. **响应生命周期管理** ```java try (StreamingChatModel model = createModel()) { model.generate(userMessage, handler); // 自动资源释放 } catch (IOException e) { // 处理资源泄漏异常 } ``` ### 三、常见错误模式及修复 | 错误现象 | 可能原因 | 解决方案 | |---------|---------|---------| | 响应中断 | 网络超时 | 设置合理超时:<br>`model.timeout(Duration.ofSeconds(30))` | | 部分内容丢失 | 缓冲区溢出 | 调整缓冲区大小:<br>`model.maxRetries(3).bufferSize(8192)` | | 线程阻塞 | 资源竞争 | 使用异步非阻塞IO:<br>`AsyncHttpClientConfig config = new DefaultAsyncHttpClientConfig.Builder().setIoThreadsCount(4).build()` | ### 四、调试建议 1. 启用详细日志: ```java OpenAiStreamingChatModel model = OpenAiStreamingChatModel.builder() //... .logRequests(true) .logResponses(true) .build(); ``` 2. 使用单元测试验证流式处理: ```java @Test void testStreaming() throws InterruptedException { CountDownLatch latch = new CountDownLatch(1); model.generate("Hello", new StreamingResponseHandler() { //... @Override public void onComplete() { latch.countDown(); } }); assertTrue(latch.await(30, SECONDS)); } ``` ### 五、性能优化(参考Flink监控指标) 1. 监控关键指标: ```java MeterRegistry registry = new SimpleMeterRegistry(); model.meterRegistry(registry); // 绑定指标监控 ``` 2. 分析处理延迟: ```java Timer timer = registry.timer("streaming.latency"); timer.record(() -> { model.generate(message, handler); }); ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值