根据数据类型的不同,对一个问题的建模有不同的方式,人们首先会考虑算法的学习方式。将算法按照学习方式分类可以让人们在建模和算法选择时,根据输入数据来选择最合适的算法,从而获得最好的结果。
在机器学习领域,有以下四种主要的学习方式。

- 监督式学习(Supervised Learning)
在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”、“非垃圾邮件”。
在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。
监督式学习的常见应用场景如分类问题和回归问题。

机器学习领域包括监督式、非监督式、半监督式和强化学习四种主要学习方式。监督式学习通过已标记的训练数据调整模型;非监督式学习则用于推断数据的内在结构;半监督式学习结合了标记和未标记数据;强化学习通过反馈调整模型,常应用于动态系统和机器人控制。
最低0.47元/天 解锁文章
15万+

被折叠的 条评论
为什么被折叠?



