1题目
给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]]
满足 i != j、i != k 且 j != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。
请你返回所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。
不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。
注意,输出的顺序和三元组的顺序并不重要。
示例 2:
输入:nums = [0,1,1]
输出:[]
解释:唯一可能的三元组和不为 0 。
示例 3:
输入:nums = [0,0,0]
输出:[[0,0,0]]
解释:唯一可能的三元组和为 0 。
2链接
视频:梦破碎的地方!| LeetCode:15.三数之和_哔哩哔哩_bilibili
3解题思路
其实这道题目使用哈希法并不十分合适,因为在去重的操作中有很多细节需要注意,在面试中很难直接写出没有bug的代码。而且使用哈希法 在使用两层for循环的时候,能做的剪枝操作很有限,虽然时间复杂度是O(n^2),也是可以在leetcode上通过,但是程序的执行时间依然比较长 。
这道题目使用双指针法 要比哈希法高效一些,那么来讲解一下具体实现的思路。
动画效果如下:
![](https://i-blog.csdnimg.cn/blog_migrate/4132f938d5ad2d93528dcb9052b47779.gif)
拿这个nums数组来举例,首先将数组排序,然后有一层for循环,i从下标0的地方开始,同时定一个下标left 定义在i+1的位置上,定义下标right 在数组结尾的位置上。
依然还是在数组中找到 abc 使得a + b +c =0,我们这里相当于 a = nums[i],b = nums[left],c = nums[right]。
接下来如何移动left 和right呢, 如果nums[i] + nums[left] + nums[right] > 0 就说明 此时三数之和大了,因为数组是排序后了,所以right下标就应该向左移动,这样才能让三数之和小一些。
如果 nums[i] + nums[left] + nums[right] < 0 说明 此时 三数之和小了,left 就向右移动,才能让三数之和大一些,直到left与right相遇为止。
时间复杂度:O(n^2)。
4代码
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> result;//空
sort(nums.begin(), nums.end());
// 找出a + b + c = 0
// a = nums[i], b = nums[left], c = nums[right]
for (int i = 0; i < nums.size(); i++) {
// 排序之后如果第一个元素已经大于零,那么无论如何组合都不可能凑成三元组,直接返回结果就可以了
if (nums[i] > 0) return result;
//去重a,注意要i>1时a和前一位做比较,如果前一位和a一样,说明本组合重复,跳过
else if (i > 0 && nums[i] == nums[i-1]) continue;
int left = i + 1;
int right = nums.size() - 1;
while (left < right) {
if (nums[i] + nums[left] + nums[right] > 0) right--;
else if (nums[i] + nums[left] + nums[right] < 0) left++;
else {
result.push_back(vector<int>{nums[i],nums[left],nums[right]});
// 去重逻辑应该放在找到一个三元组之后,对b 和 c去重
//注意left<right的条件,否则left++和right--可能出现left>right的情况
while (left < right && nums[left] == nums[left+1]) left++;
while (left < right && nums[right] == nums[right-1]) right--;
// 找到答案时,双指针同时收缩
left++;
right--;
}
}
}
return result;
}
};