【题解&比赛总结】GMOJ5348心灵治愈

22 篇文章 0 订阅
15 篇文章 0 订阅
本文探讨了一道数学竞赛题目,该题目涉及到 Bezout 定理在序列求解中的应用。作者首先从 N=1 的特殊情况出发,通过 gcd(a1, M)=1 的条件简化问题,并逐步推广到更一般的情况。对于 M 为质数的情况,作者给出了简单的解决方案,并进一步扩展到 M 为质数幂的情形,利用组合数和容斥原理得出结论。通过暴力计算验证了思路的正确性,并提供了部分代码实现。
摘要由CSDN通过智能技术生成

【题目描述】

题目太生草了,我给读者们简化一下。
给定一个长 N + 1 N+1 N+1 的序列 a a a 的第 N + 1 N+1 N+1 位,求满足 ∑ i = 1 n a i ⋅ x i + M ⋅ x n + 1 = 1 \sum_{i=1}^{n}a_i·x_i+M·x_{n+1}=1 i=1naixi+Mxn+1=1 ( x i ∈ Z ) (x_i\in \mathbb{Z}) (xiZ) 的序列 a a a 有多少个。
在这里插入图片描述

【思路】

我把我比赛时的思路说说,可能能帮助理解。
首先看到 N = 1 N=1 N=1 的情况,即 a 1 x 1 + M x 2 = 1 a_1x_1+Mx_2=1 a1x1+Mx2=1 ,诶,这不就是bezout定理吗?那么我们就保证 g c d ( a 1 , M ) = 1 gcd(a_1,M)=1 gcd(a1,M)=1 就行了吗?
然后我就大胆猜想这是不是能够推广到更多的情况呢?,然后我看看了样例解释的几个数据,欸?好像的确是诶。
接着,我就打了个暴力去看看这东西对不对,试了一下 N = 8 N=8 N=8 M = 8 M=8 M=8 的样例,诶,过了,然后我就往后继续推了。
接下来 M M M 为质数,我简单推了一下,发现的确挺简单。你想嘛,我们有 N N N个位置给你用,每个位置又有 M M M种选择,那么,总方案数就是 M N M^N MN,然后再减去不符合的方案,即1.为什么呢?其实啊,因为1~M-1中无论选哪一个都会使得整个的gcd为1.那么只要不是全部都是M的情况就可以了。
然后我再看,M为质数的幂,然后往组合数方面想,结果发现不对…只好通过打表找规律,找了半天,发现了一个这样的规律:设 M = p e M=p^e M=pe ,则不符合情况的=当 M M M p p p时的情况 × \times × p n ( e − 1 ) p^{n(e-1)} pn(e1) ( p n − 1 ) × p n ( e − 1 ) (p^n-1)\times p^{n(e-1)} (pn1)×pn(e1),然后就这么完成了80分的做法。
其实100分的做法也不算很难(比赛时没有推出来),先把我推出来的那个公式化简一下,就变成了 M N − ( M p ) N M^N-(\frac{M}{p})^N MN(pM)N但推广起来我们发现减多了,然后发现这其实就是容斥原理,这就没了,具体实现见代码。

C o d e Code Code~

#include<cstdio>
#define ll long long
using namespace std;
const ll mod=1e9+7;
int cnt;
ll n,m,ans,sum;
ll p[100005];
ll ksm(ll a,ll b){
	ll res=1;
	for (;b;b>>=1,a=a*a%mod)
		if (b&1)
			res=res*a%mod;
	return res;
}
int main(){
	freopen("heal.in","r",stdin);
	freopen("heal.out","w",stdout);
	scanf("%lld%lld",&n,&m);
	ll s=m;
	for (ll i=2;i*i<=m;++i){
		if (s%i==0){
			p[++cnt]=i;
			while (s%i==0) s/=i;
		}
	}
	if (s>1) p[++cnt]=s;
	ans=ksm(m%mod,n);
	for (int i=1;i<(1<<cnt);++i){
		ll sum=1;
		s=0;
		for (int j=1;j<=cnt;++j){
			if ((1<<(j-1)&i)){
				sum=sum*p[j];
				++s;
			}
		}
		sum=ksm(m/sum%mod,n);
		if (s&1) ans=(ans-sum+mod)%mod;
		else ans=(ans+sum)%mod;
	}
	printf("%lld",ans);
	fclose(stdin);
	fclose(stdout);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值