第一篇:基础篇 声学指标

本文介绍了汽车NVH领域的声学基础知识,包括声压级、计权、语音清晰度、响度等概念。重点讲解了如何通过声压级、加权曲线来描述噪声,以及如何使用清晰度指数评估驾驶舱内语音通信的清晰程度。同时,讨论了人耳感知声音的生理机制,并提及特选的语音干扰电平在分析汽车声学性能中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本专栏分享传统NVH知识点,从声学理论、材料声学、汽车噪声振动分析、车辆及其零部件甚至原材料的声学测试方法等多维度介绍汽车NVH,一些专用术语同时给出了中英文对照,欢迎新人、同行、爱好者一起交流。

由于内容写的较为仓促,有误的地方欢迎大家批评指正,谢谢~
传统NVH干货


1. 声压级(Sound Pressure Level)

汽车NVH(Noise Vibration and Harshness——NVH)工程师一直在努力研究由传感器(Sensor)采集的声音与人耳感知的声音的差别。在声音用声压级(Sound Pressure Level——SPL)描述之前,为了纪念电话的发明者亚历山大·格雷厄姆·贝尔(Alexander Graham Bell),声学专家们(Acousticians)采用对数单位贝儿(Bel)来描述声压级的大小。对数单位可以表现出一个巨大的动态范围(Dynamic Range)&#

python+opencv简谱识别音频生成系统源码含GUI界面+详细运行教程+数据 一、项目简介 提取简谱中的音乐信息,依据识别到的信息生成midi文件。 Extract music information from musical scores and generate a midi file according to it. 二、项目运行环境 python=3.11.1 第三方库依赖 opencv-python=4.7.0.68 numpy=1.24.1 可以使用命令 pip install -r requirements.txt 来安装所需的第三方库。 三、项目运行步骤 3.1 命令行运行 运行main.py。 输入简谱路径:支持图片或文件夹,相对路径或绝对路径都可以。 输入简谱主音:它通常在第一页的左上角“1=”之后。 输入简谱速度:即每分钟拍数,同在左上角。 选择是否输出程序中间提示信息:请输入Y或N(不区分大小写,下同)。 选择匹配精度:请输入L或M或H,对应低/中/高精度,一般而言输入L即可。 选择使用的线程数:一般与CPU核数相同即可。虽然python的线程不是真正的多线程,但仍能起到加速作用。 估算字符上下间距:这与简谱中符号的密集程度有关,一般来说纵向符号越稀疏,这个值需要设置得越大,范围通常在1.0-2.5。 二值化算法:使用全局阈值则跳过该选项即可,或者也可输入OTSU、采用大津二值化算法。 设置全局阈值:如果上面选择全局阈值则需要手动设置全局阈值,对于.\test.txt中所提样例,使用全局阈值并在后面设置为160即可。 手动调整中间结果:若输入Y/y,则在识别简谱后会暂停代码,并生成一份txt文件,在其中展示识别结果,此时用户可以通过修改这份txt文件来更正识别结果。 如果选择文件夹的话,还可以选择所选文件夹中不需要识别的文件以排除干扰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天亮继续睡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值