P8525 [Ynoi2078] 《A Path Towards Autonomous Machine Intelligence》

题目描述

给定一个长度 n 的序列 1,…,a1​,…,an​,需要进行 m 次操作,操作共有三种类型:

操作 1:给定 l,r,x,先新建一个数组 b 满足 bi​=ai​,之后将 ax​,…,ax+r−l​ 同时修改为 bl​,…,br​;

操作 2:给定 l,r,将al​,…,ar​ 同时修改为除以 22 下取整后的值;

操作 3:给定 l,r,求 al​,…,ar​ 的和。

输入格式

第一行一个整数n。

接下来一行n 个整数表示序列1,…,a1​,…,an​。

接下来一行一个整数 m。

接下来m 行,每行表示一个操作:

1 l r x 表示操作 1;

2 l r 表示操作 2;

3 l r 表示操作 3。

输出格式

共m 行,每行一个整数,表示每个操作的答案。

输入输出样例

输入 #1

10 6
3 5 93 89 1 1 3 39
3804 3800 3800 3791 3804 3807 3803 3720
83 93 90 121 87 86 81 110
298 291 302 383 298 296 303 266
15768 15760 15818 15836 15768 15773 15773 15822
204761 204753 204692 204781 204765 204765 204762 204678

输出 #1

3805
85
299
15769
204763
93

说明/提示

Idea:nzhtl1477,Solution:ccz181078,Code:ccz181078,Data:ccz181078

样例解释:

在强制在线加密前,样例输入为:

10 6
3 5 93 89 1 1 3 39
1 5 5 18 1 2 6 85
6 8 15 44 2 3 4 59
1 8 5 84 1 3 4 33
1 9 83 69 1 4 4 87
2 10 79 54 6 6 1 93

对于 100%100% 的数据,满足:

1≤n≤106

1≤m≤3×105

对于 1≤i≤m:

1≤Li​≤Ri​≤n

1≤ai​≤106

1≤bi​≤106

1≤li​≤ri​≤i

1≤Xi​≤n

1≤xi​≤106。

一血纪念。

题目很抽象,大概意思是,给出一个操作序列 (Li​,Ri​,v),v 是幺半群中的元素。并且给出运算 ⊕⊕,每次在操作序列末尾插入,或者询问给出 l,r,x,按顺序遍历 [l,r] 中的操作,若 i​≤x≤Ri​ 就把答案 ⊕v,否则答案不变。强制在线。

考虑在线构建操作序列的线段树,每次插入操作需要建立线段树上的若干节点。

考虑建立的节点为自底向上的一条右链,那么注意到这里是可以对每个节点 pushup 的,此处的时间复杂度仍然为 O(nlogn)。

那么问题就是在线段树上分解区间,对于分解出的区间,找到 �x 所属的区间,即找到前驱。

考虑分散层叠的思想,在父节点保存两个子节点的归并序列并且指向子节点的序列的位置。那么只用在根节点二分一次,此后每次都可以直接定位到子节点的序列。对每个根进行定位,考虑从大到小维护 2k 的分散层叠,每次选取 1441​ 和 1221​ 的点混合。

这部分是口胡,代码待补。

针对过分分布的普遍化:一项调查 "towards out of distribution generalization: a survey"是一项对过分分布普遍化现象的研究。该研究关注如何处理机器学习中的模型在训练过程中未曾遇到的情况下的泛化能力。 当前,机器学习中的模型往往在面对与训练数据不同的情况时出现问题。这些情况被称为"分布外"或"过分分布"。过分分布问题在现实世界的应用中非常普遍,例如在医学影像诊断中,模型在对未见过的病例进行预测时可能出现错误。 为了改善过分分布问题,该调查着重研究了几种处理方法。首先,一种方法是使用生成对抗网络(GAN)。GAN可以通过学习未见过的数据分布来生成合成样本,从而提高模型的泛化性能。其次,该调查还介绍了自监督学习和深度对比学习等技术。这些方法通过引入自动生成标签或学习新的特征表示来增强模型的泛化能力。 此外,该调查提到了一些用于评估模型在过分分布上泛化能力的评估指标。例如,置信度和不确定性度量可以帮助评估模型对于不同类别或未知样本的预测是否可信。同时,模型的置换不变性和鲁棒性也是评估模型泛化能力的重要因素。 总结来说,这项调查对于解决过分分布普遍化问题提供了一些有益的方法和指导。通过使用生成对抗网络、自监督学习和深度对比学习技术,以及评估模型的不确定性和鲁棒性,我们可以提高模型在未曾遇到的情况下的泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值