【大数据处理技术】实验5

一、测试(可忽略)

这里使用IDEA创建java项目进行测试

1.创建Java项目

2.编写java代码(源代码在后面)

3.生成jar包

(1)修改项目结构(个人觉得可以忽略掉)

文件→项目结构→工件

添加来自具有依赖项的模块

选择主类

复制到输出目录并通过清单链接

(2)导出jar包

构建→构建工件→构建

IDEA项目将在out文件中生成对应jar包

4.运行jar包

注意:需要正确配置jdk环境变量,不然无法运行jar包

【以上对完成此次作业没有任何帮助(#^.^#)】

【以上对完成此次作业没有任何帮助(#^.^#)】

【以上对完成此次作业没有任何帮助(#^.^#)】

二、创建mywordfile文件【省略图片】

(1)在本地/usr/local/hadoop创建mywordfile.txt文件(略)

(2)在Hadoop上创建input,output目录

./bin/hdfs dfs -mkdir input

./bin/hdfs dfs -mkdir output

(3)启动Hadoop,上传文件mywordfile.txt到input目录中

./bin/hdfs dfs - put mywordfile.txt input

(4)创建myapp目录(将生成的jar包导入此目录)

sudo mkdir /usr/local/hadoop/myapp

三、使用Eclipse创建java文件,生成Test5.jar包

(1)使用Eclipse创建java项目

注意:使用Eclipse前一定要配置好jdk,创建和自己本地jdk版本一致的项目!

导入项目需要的jar包:

①/usr/local/hadoop/share/hadoop/common”目录下的hadoop-common-3.1.3.jar和haoop-nfs-3.1.3.jar;

②“/usr/local/hadoop/share/hadooplcommon/lib”目录下的所有JAR包;

③“/usrlocal/hadoop/share/hadoop/mapreduce”目录下的所有JAR包,但是,不包括jdiff、lib、lib-examples和sources目录

JRE System Library建议选用[JS2E-1.5]

(2)编写java代码

源代码:(WordCount)

import java.io.IOException;

import java.util.Iterator;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount {

    public WordCount() {

    }

     public static void main(String[] args) throws Exception {

        Configuration conf = new Configuration();

        String[] otherArgs = (new GenericOptionsParser(conf, args)).getRemainingArgs();

        if(otherArgs.length < 2) {

            System.err.println("Usage: wordcount <in> [<in>...] <out>");

            System.exit(2);

        }

        Job job = Job.getInstance(conf, "word count");

        job.setJarByClass(WordCount.class);

        job.setMapperClass(WordCount.TokenizerMapper.class);

        job.setCombinerClass(WordCount.IntSumReducer.class);

        job.setReducerClass(WordCount.IntSumReducer.class);

        job.setOutputKeyClass(Text.class);

        job.setOutputValueClass(IntWritable.class);

        for(int i = 0; i < otherArgs.length - 1; ++i) {

            FileInputFormat.addInputPath(job, new Path(otherArgs[i]));

        }

        FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1]));

        System.exit(job.waitForCompletion(true)?0:1);

    }

    public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {

        private static final IntWritable one = new IntWritable(1);

        private Text word = new Text();

        public TokenizerMapper() {

        }

        public void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {

            StringTokenizer itr = new StringTokenizer(value.toString());

            while(itr.hasMoreTokens()) {

                this.word.set(itr.nextToken());

                context.write(this.word, one);

            }

        }

    }

public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

        private IntWritable result = new IntWritable();

        public IntSumReducer() {

        }

        public void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {

            int sum = 0;

            IntWritable val;

            for(Iterator i$ = values.iterator(); i$.hasNext(); sum += val.get()) {

                val = (IntWritable)i$.next();

            }

            this.result.set(sum);

            context.write(key, this.result);

        }

    }

}

(3)生成jar包:

右键项目→选择Export→选择Java/Runnable JAR file

Launch configuration:选择运行的主类(我的是WordCount -Study)

Export destination:选择导出位置:/usr/lcoal/hadoop/myapp

 

 

注意:权限问题:sudo chmod 777 -R /usr/local/hadoop

四、使用Test5.jar包

备注:本人的Eclipse导出jar包后报错找不到input,所以由使用idea导出jar包(原理和Eclipse一致,过程可以上网搜索),导出后的jar包名字为:test5.jar

 

【参考资料】

eclipse怎么配置jdk环境变量教程-系统部落

eclipse 导出jar包_xyzko1的博客-CSDN博客_eclipse导出jar包

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值