异常数据处理——箱型图分析原理及Python例程

箱型图分析原理及Python例程

 一、箱型图分析原理

箱型图可以通过程序设置一个识别异常值的标准,即大于或小于箱型图设定的上下界的数值则识别为异常值,箱型图如下图所示:

首先我们定义下上四分位和下四分位:

上四分位我们设为 U,表示的是所有样本中只有1/4的数值大于U ,即从大到小排序时U处于25%处;
同理,下四分位我们设为 L,表示的是所有样本中只有1/4的数值小于L,即从大到小排序时L处于75%处。

然后我们定义上界和下界:

我们设上四分位与下四分位的插值为IQR,即:IQR=U-L

上界设为 U+1.5IQR ,下界设为: L - 1.5IQR

箱型图选取异常值比较客观,在识别异常值方面有一定的优越性。

二、箱型图分析Python例程

设数据为1454*609维数据,识别为异常值后作差值处理,例程为:


                
  • 0
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值