优劣解距离法Topsis模型

一、Topsis法的概述

Topsis法(Technique for Order Preference by Similarity to Ideal Solution) ,可翻译为逼近理想解排序法,国内简称为优劣解距离法。该方法是一种常用的综合评价方法,其能充分利用原始数据的信息,其结果能精确地反应各评价方案之间的差距。

二、模型建立的步骤

1.将原始矩阵正向化

在生活中,最常见的指标如下

指标名称指标特点
极大型(效益型)越大(多)越好
极小型(成本型)越小(少)越好
中间型越接近某个值越好
区间型落在某区间最好

1)极大型

通常都将所有指标转换为极大型,该过程称为指标正向化

2)极小型

极小型指标的正向化公式为:

max−x

若所有元素均为正数,也可以用 1/x 表示。
由于不同指标的量纲不同,所以还需要对正向化矩阵进行标准化处理。

3)中间型

设{xi}是一组中间型指标序列,其最佳数值为xbest,则中间型指标的正向化公式为:

在这里插入图片描述

4)区间型

设{xi}是一组区间型指标序列,其最佳区间为[a,b],则区间型指标的正向化公式为:
在这里插入图片描述

2.正向化矩阵标准化

目的:消除不同指标量纲的影响
现假设有n个要评价的对象,m个评价指标(已经正向化了)构成的正向化矩阵如下:
在这里插入图片描述

对其标准化的矩阵记为Z,Z中的每个元素为:
在这里插入图片描述

3.计算得分并归一化

计算得分的公式为:
在这里插入图片描述
设一个n个评价对象,m个评价指标的标准化矩阵Z为:
在这里插入图片描述

定义最大值
在这里插入图片描述

定义最大小值
在这里插入图片描述
定义第i(i = 1,2,⋯ \cdots⋯,n)个评价对象与最大值的距离为:
在这里插入图片描述

定义第i(i = 1,2,⋯ \cdots⋯,n)个评价对象与最小值的距离为:
在这里插入图片描述

所以,第i(i = 1,2,⋯ \cdots⋯,n)个评价对象未归一化的得分为:
在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值