Let {fa:a∈A} be a collection of convex functinos from Rn to R , with same domain, then f(x)=supa∈Afa(x) is a convex function.
- Proof1: Take
x,y∈domf
,
θ∈[0,1]
,
f(θx+(1−θ)y)=≤≤=supafa(θx+(1−θ)y)supa[θfa(x)+(1−θ)fa(y)]θsupafa(x)+(1−θ)supafa(y)θf(x)+(1−θ)f(y)
(The proposition is true for domf=⋂a∈Adomfa , but false for domf=⋃a∈Adomfa .)
Proof2:
epi(f)==={(x,t):x∈domf,t>fa(x)∀a∈A}{(x,t):(x,t)∈epi(fa)∀a∈A}⋂a∈Aepi(fa)Example: Let x[i] denote the i -th largest component of
x=(x1,⋯,xn)∈Rn ,
then max−sumr(x)=x[1]+x[2]+⋯+x[r] is convex.Proof: max−sumr(x)≥xi1+xi2+⋯+xir
for any {i1,⋯,ir}⊆{1,⋯,n} with ij≠ik for j≠k
so it is convex.Example: Let C⊆Rn , define Sc(x)=sup{yTx:y∈C} , then Sc is convex.
Example: Let f:Sn→R , f(X) is the largest eigenvalue of X .
Claim:f is convex.- Proof: First claim that f(X)=sup{yTXy:∥y∥2=1}
Proof of claim:
sup∥y∥2=1yTXy===≤=sup∥y∥2=1yTPDPTysup∥v∥2=1vTDvsup∥v∥2=1λiv2isup∥v∥2=1max(λi)∑i=1nv2imax(λi)Example: Let f:Rm×n→R be defined by f(X)=∥X∥2 where ∥X∥2=sup∥y∥2=1∥Xy∥2 is the spectural norm of X∈Rm×n .
Claim: f(X)=supu,v{uTXv:∥u∥2=1,∥v∥2=1}
because ∥Xv∥2=sup{uTXv:u∈Rn,∥u∥2=1}
more generally: ∥X∥a,b=sup{∥Xv∥b:∥v∥a=1}=sup{uTXv:∥v∥a=1,∥u∥b∗=1}
( ∥Xv∥b=∥Xv∥b∗∗=supu{uTXv:∥u∥b∗=1} )Composition: Have f(x)=h(g(x)) , x∈Rn , g(x)∈R , when is f convex?
- Would-be-proof: Take
x,y∈domf , θ∈[0,1] then
f(θx+(1−θ)y)=≤≤=h(g(θx+(1−θ)y))h(θg(x)+(1−θ)g(y))θh(g(x))+(1−θ)h(g(y))θf(x)+(1−θ)f(y)use domf is convexuse g is convex/concave, h is nondecreasing/nonincreasinguse h is convex
- | - | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
Condition | g | convex | concave | convex | concave |
- | h | nondecreasing | nonincreasing | nonincreasing | nondecreasing |
- | h | convex | convex | concave | concave |
Result | f | convex | convex | concave | concave |
- Example:
g(x)=x2−1,h(x)=x3/2,domh=R+
then
dom(h∘g)=(−∞,−1]⋃[1,+∞]
is not convex.
Example 3.13:
If g is convex theneg(x) is convex. 1
If g is concave and positive thenlog(g(x)) is concave. 4
If g is concave and positive then1g(x) is convex. 2
If g is convex and nonnegative andp≥1 , g(x)p is convex. 1
g:Rn→Rm , say g is K-convex, whereK is a cone in Rm ,
if domg is convex and g(θx+(1−θ)y)⪯Kθg(x)+(1−θ)g(t)
x⪰Ky⟹h(x)≥h(y) K-nondecreasing.Example 3.14:
h(z)=log(∑ki=1ezi) , so log(∑ki=1egi(x)) will be convex if g1,⋯,gk are convex.Minimization: Let f:Rn×Rm be a convex function, then
g(x)=infy:(x,y)∈domff(x,y) is convex.Proof: Let x1,x2∈domg , θ∈[0,1] .
then for any ε>0 , ∃y1,y2 , s.t.
g(x1)≥f(x1,y1)−ε , g(x2)≥f(x2,y2)−ε and
g(θx1+(1−θ)x2)=≤≤≤infyf(θx1+(1−θ)x2,y)f(θx1+(1−θ)x2,θy1+(1−θ)y2)θf(x1,y1)+(1−θ)f(x2,y2)θg(x1)+(1−θ)g(x2)+εExample: Let C⊆Rn be a convex set, then
g(x)=infy∈C∥x−y∥ is a convex function.- Proof: Use
f(x,y)=∥x−y∥domf=Rn×C
,
f(θx1+(1−θ)x2,θy+(1−θ)y2)==≤=∥θx1+(1−θ)x2−θy1−(1−θ)y2∥∥θ(x1−y1)+(1−θ)(x2−y2)∥θ∥x1−y1∥+(1−θ)∥x2−y2∥f(x1,y1)+f(x2,y2)
Consider function
g(w)=infx∑mi=1wi(aTix−bi)2
, “weighted least square”
concave function of
w
Let
assume
ATWA≻0
, then optimal
x=(ATWA)−1ATWb
(
minx(xTAx+2bTx),∇=2Ax+2b=0⟹bestx=−A−1b
)
( ATWA=∑ai(wiaTi)=∑wiaiaTi )