异常检测 | CBiGAN(结合GANs和AutoEncoders进行高效的异常检测)

关于<Combining GANs and AutoEncoders for efficient anomaly detectio>论文学习

 

简介 

        标准BiGAN异常检测器的偏移重建,在像素空间中有着较大的距离。CBiGAN中引入的一致性损失解决了这一问题,如图一。

图一 

        最近的方法直接采用深度模型在特征空间中上下文映射和建模数据。在此背景下,基于Autoencoders (AEs)或生成对抗网络(GANs)的图像深度生成模型被证明是异常检测的有效方法。这一类中的大多数方法都是基于重构的:从一个给定的样本开始,它们在模型学习的正常数据流形上重构最近的样本,并在一个预定义的空间(例如像素、潜在的或组合)中测量偏差,用来评估异常。基于Autoencoderbased的方法以一种直接的方式实现这个策略:编码器在正常的数据流形中投影给定的样本,而解码器执行重构。然而,基于自动编码器(如ves)的生成模型可以为真实感图像生成模糊重建,通常被GANs所超越;因此,在本异常检测工作中,将注意力集中在GAN-based的方法上。

        在基于GAN的方法中,输入重构提出了一个挑战,因为在标准公式中,没有编码器将样本投射到潜在空间中,并且通常需要花费昂贵的潜在空间优化。基于双向GAN网(Bidirectional GANs, BiGAN)的有效方法是通过共同学习一个编码器来补充解码器(即生成器)并提供所需的投影(如EGBAD)来解决这个问题。然而,重构样本往往是不对齐的:重构目标仅由鉴别器定义,并不能保证编码解码后的样本能精确地重构(见图一)。在本工作中,解决了上述问题,提出了一种新的图像异常检测方法,其中,在BiGAN的编码和解码部分引入一致性约束作为正则化术语。称该模型为CBiGAN,新公式能够提高重建能力相对于BiGAN。


背景(BACKGROUND)

A. Generative Adversarial Networks (GAN)

GAN参考:

生成对抗网络GAN 学习笔记_六个核桃Lu的博客-CSDN博客

B. Wasserstein GAN (WGAN)

WGAN参考:

WGAN(wasserstein GAN)_奔跑的林小川的博客-CSDN博客_wgan

C. Bidirectional GANs (BiGAN)

 BiGAN参考:

BigGAN、BiGAN、BigBiGAN简单介绍_梦星魂24的博客-CSDN博客_bigbigan

深度学习-李宏毅GAN学习之InfoGAN,VAE-GAN,BiGAN_王伟王胖胖的博客-CSDN博客


 方法(METHOD)

        采用BiGAN作为生成模型,但使用Wassestein距离公式对其进行了实例化; 

        所有这三个模块都被定义为深度神经网络,并通过小批量梯度下降交替优化(一次G和E,一次D)。 损失函数:

        对正常数据进行训练后,异常检测过程是基于重构的:给定一个测试样本x,我们计算E(x),在模型学习的正常数据流形上找到其最近的潜在表示,然后计算G (E(x)),构建其重构。按照AnoGAN方法,将异常分数A(x)定义为两项的线性组合:

        a)基于像素的L1重构误差 L_{R}\left ( x \right )

        b)基于特征的鉴别器误差 L_{fD}\left ( x \right )

在形式上, 

        不幸的是,对于异常检测来说,BiGAN训练过程对E和G的对齐没有任何约束(即 E^{-1}= G,反之亦然),这可能会导致正常数据重构样本的误差和错位,从而导致较高的误报率。图1显示了这种现象的一个例子,重构样本相对于输入样本呈现轻微的旋转,这导致了一个错误的高异常分数。为了解决这一问题,我们在E和G上增加了周期一致性正则化项L_{C},以促进它们的对齐。在形式上,

新损失函数: 


评价

        结果表明,该方法解决了GAN公式中常见的不对中问题,大大提高了BiGAN算法对复杂目标的性能。此外,我们的方案在降低需要单次评估策略的计算成本的同时,与昂贵的最先进的迭代方法性能相当。我们观察到,我们的模型在纹理类型异常检测上特别有效,因为它设置了这类技术的新状态,比使用额外数据的模型表现更好。 


总结

        使用深层生成模型和基于重建的方法来处理一类图像异常检测。提出了一种改进的双向GAN模型CBiGAN,该模型在编码器和解码器模块上都具有一致性正则化。CBiGAN模型概括并结合了BiGANs和Autoencoders,以保留前者的建模能力和后者的重构精度。实验结果表明,该方法在保持测试效率的同时,大大提高了双向GAN在纹理和对象类别上的重构能力(从而提高了性能)。      

论文代码:https://github.com/fabiocarrara/cbigan-ad/ 

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程日记✧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值