对YOLO bounding box的理解

本文通过初中线性回归的例子回顾了回归的基本概念,并详细解析了YOLOv1中如何从XML标注文件中提取边界框信息,计算中心坐标及尺寸,最终实现边界框的回归。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、yolov1 bounding box

bounding box是怎么产生的?回归产生的,回归?哎呀,妈呀,回归是什么我都忘记了,好吧,我来举个初中的线性回归例子简单回顾一下

有两组数据A和B

A = [1,2,3,4,5] 

B = [2,4,6,8,10]

利用回归的思想预测当A为6的时候B对应的值是多少

很明显回归参数就是2,回归程为y = 2x,所以A为6的时候B对应的值应该是12,这就是最简单的回归思路了。

然后yolo1中提到的就是直接利用整幅图像经过网络结构产生7*7的grid cell,每个grid cell预测x,y,w,h,confidence等几个值,其中confidence就是IOU的值啦。关键这个bounding box怎么回归产生的,对我这种小白来说还是纠结了好几天才算理解到一丢丢,所以赶紧小笔记记一下,欢迎各位大佬斧正(请原谅我想多了,就我这个级别的blog还有大佬看[笑哭])

好,我们去看一下Annotation里面的XML文件,截取一部分看一下


看到标注文件里面的Bounding box的格式了没,都是由[xmin,xmax,ymin,ymax]组成,中心坐标呢?


回顾yolov1论文还说要把坐标和长宽归一化,你中心坐标都没有如何回归?最后在scipts找到了vol_label.py文件才知道中心坐标是根据标签中的xmin,xmax,ymin,ymax计算出来的,哈哈哈,详见下面代码注释。


def convert(size, box):
    dw = 1./size[0] # 归一化的时候就是使用宽度除以整个image_size的宽度 
    dh = 1./size[1] # 归一化的时候就是使用高度除以整个image_size的高度
    x = (box[0] + box[1])/2.0 # 使用(xmin+xmax)/2得到x的中心点
    y = (box[2] + box[3])/2.0 # 使用(ymin+ymax)/2得到y的中心点
    w = box[1] - box[0] # 然后宽度就是使用xmax-xmin计算得到
    h = box[3] - box[2] # 然后高度就是使用ymax-ymin计算得到
    x = x*dw # 归一化中心坐标x
    w = w*dw # 归一化bbox宽度
    y = y*dh # 归一化中心坐标y
    h = h*dh # 归一化bbox高度
    return (x,y,w,h)

def convert_annotation(year, image_id):
    in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
    out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')
    tree=ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
	# 获取标注中bbox的数据并以元组方式返回
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
	# 向convert传入size = (w,h),和b,注释中分别是(xmin,xmax,ymin,ymax)   
	bb = convert((w,h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

有了中心坐标x,y和bbox的w,h这样就可以愉快地训练出回归参数了

待更... ..

<think>我们正在解析创建和初始化BoundingBox对象的代码。根据用户需求,我们需要展示如何定义BoundingBox类以及如何初始化其属性(坐标和属性)。通常,在目标检测或目标跟踪中,一个边界框对象至少包含以下属性:-位置和尺寸:通常用中心坐标(x,y)和宽(w)、高(h)表示,或者用左上角坐标(x1, y1)和右下角坐标(x2, y2)表示。-类别(Class):表示检测到的物体类别。-置信度(prob):表示检测结果的置信分数。-跟踪ID(track_id):如果用于多目标跟踪,则可能需要一个唯一的ID来跟踪同一物体在不同帧中的出现。根据引用[2]中提到的边界框调整函数,我们可以推断边界框通常用四个坐标值表示(x1, y1,x2, y2)。但是,在YOLO等模型中,常用的是中心点坐标和宽高(x, y, w, h)。因此,我们可以设计一个BoundingBox类,支持两种表示方式,或者根据需求选择一种。这里我们将采用中心点坐标和宽高的表示方式,因为这与YOLOv5的输出格式一致(引用[3])。下面我们将创建一个BoundingBox类,并初始化这些属性。同时,为了方便使用,我们还可以提供一些辅助方法,例如转换为其他格式(如左上角和右下角坐标)等。代码示例:</think>### 创建和初始化 BoundingBox 对象的 Python 代码解析 以下是创建和初始化边界框对象的完整代码实现及其详细解析: #### 1. BoundingBox 类定义 ```python class BoundingBox: def __init__(self, x=0.0, y=0.0, w=0.0, h=0.0, class_name="", prob=0.0, track_id=0): """ 边界框对象构造函数 :param x: 中心点x坐标 (归一化或像素坐标) :param y: 中心点y坐标 :param w: 边界框宽度 :param h: 边界框高度 :param class_name: 物体类别名称 :param prob: 检测置信度 (0.0~1.0) :param track_id: 目标跟踪ID (多目标跟踪时使用) """ self.x = x # 中心点x坐标 self.y = y # 中心点y坐标 self.w = w # 边界框宽度 self.h = h # 边界框高度 self.class_name = class_name # 物体类别 self.prob = prob # 检测置信度 self.track_id = track_id # 跟踪ID ``` #### 2. 坐标转换方法(实用函数) ```python def to_corners(self): """转换为角点坐标表示法 (x1, y1, x2, y2)""" x1 = self.x - self.w / 2 y1 = self.y - self.h / 2 x2 = self.x + self.w / 2 y2 = self.y + self.h / 2 return (x1, y1, x2, y2) def to_pixel(self, img_width, img_height): """将归一化坐标转换为像素坐标""" return BoundingBox( x=self.x * img_width, y=self.y * img_height, w=self.w * img_width, h=self.h * img_height, class_name=self.class_name, prob=self.prob, track_id=self.track_id ) ``` #### 3. 对象初始化示例 ```python # 示例1: 从YOLOv5检测结果初始化[^3] detection_result = model_output[0] # 假设来自YOLO模型的输出 box = BoundingBox( x=detection_result[0].item(), # 中心x坐标 y=detection_result[1].item(), # 中心y坐标 w=detection_result[2].item(), # 宽度 h=detection_result[3].item(), # 高度 class_name=model.names[detection_result[5].item()], # 类别名称 prob=detection_result[4].item() # 置信度 ) # 示例2: 手动创建边界框 manual_box = BoundingBox( x=0.45, y=0.62, w=0.3, h=0.4, class_name="dog", prob=0.92 ) # 示例3: 带跟踪ID的边界框(多目标跟踪) tracked_box = BoundingBox( x=0.35, y=0.28, w=0.15, h=0.25, class_name="cat", prob=0.87, track_id=42 ) ``` #### 4. 关键属性解析 | 属性 | 类型 | 说明 | 取值范围 | |------|------|------|----------| | `x` | float | 边界框中心点的x坐标 | 归一化: [0.0, 1.0]<br>像素: [0, 图像宽度] | | `y` | float | 边界框中心点的y坐标 | 归一化: [0.0, 1.0]<br>像素: [0, 图像高度] | | `w` | float | 边界框宽度 | 归一化: [0.0, 1.0]<br>像素: [0, 图像宽度] | | `h` | float | 边界框高度 | 归一化: [0.0, 1.0]<br>像素: [0, 图像高度] | | `class_name` | str | 检测到的物体类别 | 如: "person", "car" | | `prob` | float | 检测置信度 | [0.0, 1.0] | | `track_id` | int | 目标跟踪ID | ≥0 (0表示未跟踪) | #### 5. 坐标系统说明 边界框通常使用两种坐标表示法: 1. **中心点表示法** $(x_c, y_c, w, h)$ - 模型输出常用格式(如YOLO系列[^3]) - 计算IoU(交并比)时更方便 2. **角点表示法** $(x_1, y_1, x_2, y_2)$ - 左上角和右下角坐标 - 图像处理库(如OpenCV)常用格式 - 可通过`to_corners()`方法转换 #### 6. 数据增强中的边界框处理[^2] ```python # 边界框坐标调整示例(数据增强) def adjust_bounding_boxes(boxes, scale_x, scale_y, dx, dy): adjusted_boxes = [] for box in boxes: # 转换为角点坐标进行调整 x1, y1, x2, y2 = box.to_corners() x1 = int(x1 * scale_x + dx) y1 = int(y1 * scale_y + dy) x2 = int(x2 * scale_x + dx) y2 = int(x2 * scale_y + dy) # 转换回中心点表示法 new_box = BoundingBox( x=(x1 + x2)/2, y=(y1 + y2)/2, w=(x2 - x1), h=(y2 - y1), class_name=box.class_name, prob=box.prob, track_id=box.track_id ) adjusted_boxes.append(new_box) return adjusted_boxes ``` #### 7. 可视化应用 在三维可视化系统中(如引用[1]),边界框可扩展为3D边界盒: ```python class BoundingBox3D(BoundingBox): def __init__(self, x=0.0, y=0.0, z=0.0, w=0.0, h=0.0, d=0.0, **kwargs): super().__init__(x, y, w, h, **kwargs) self.z = z # 深度坐标 self.d = d # 深度尺寸 ``` > **最佳实践**:在目标跟踪系统中,建议使用归一化坐标(0.0-1.0范围),便于处理不同分辨率的输入图像,并在渲染前转换为像素坐标。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无情的搬砖机器

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值