Complex analysis review 5

Maximum modulus principle and Schwarz lemma

Average Vaule Properties

f(z0)=12πiD(z0,r)f(ξ)ξz0dξ=12πi2π0f(z0+reit)ireitreitdt=12π2π0f(z0+reit)dt.

Shows that f(z0) is equal to the integration average on the circle D(z0,r) .

Maximum modulus principle

Suppose that f(z) is analytic on UC , and there is a z0U such that |f(z0)||f(z)|,zU , then f(z) must be a constant function on U .

Multiple by a constant with modulus 1, such that M=f(z0)0, let

S={zU|f(z)=f(z0}.

Then S . Since f is a continuous function on U, so S is closed set. Now we want to prove that S is also an open set, then since U is a single connected domain, we concluded that S=U.

If wS , choose r , such that D(w,r)U, and let 0<r<r , then

M=f(w)=|12π2π0f(w+reit)dt|M.

So
f(w+reit)=|f(w+reit)|=M

for any t and 0<r<r, which means
D(w,r)S.

From the maximum modulus principle, we have that if f is analytic on UC, U is a bounded domain, and f is continuous on U¯ , then if f is not identical to a constant function, |f(z)| can only attains its maximum on the boundary U .

Schwarz Lemma

Suppose that f is an analytic function which maps D=D(0,1) into D , and f(0)=0, then

|f(z)||z|,|f(0)|1.

Moreover |f(z)|=|z|,z0 or |f(0)|=1 holds if and only if f(z)=eiτz.τR .

Let

G(z)=f(z)zf(0)ifz0ifz=0

Then G(z) is analytic on D . Consider {z||z|1ϵ}, by maximum modulus principle, we have
|G(z)|max|z|=1ϵ|f(z)|1ϵ<11ϵ.

Let ϵ0 , we have |G(z)|1 on D . Therefore, when z0, |f(z)|z and when z=0 , |G(0)|=|f(0)|1 . The case when equality holds are easy.

Aut(D)

Let aD ,

ϕa(z)=z+a1a¯zAut(D)

And ϕ1a=ϕa . Then mapping above is called the Mobius mapping.

Let τR , and define the rotation mapping

ξ=ρτ(z)=eiτz

Theorem

If fAut(D) , then there is aD,τR , such that

f(z)=ϕaρτ(z).

Which means that the element of Aut(D) is the component of Mobius tranforamtion and rotation transformation.

Let b=f(0) then let

G=ϕbf

G is also in Aut(D), and G(0)=ϕbf(0)=ϕb(b)=0 , by Schwarz lemma, we have |G(0)|1 . And G is invertible with G1Aut(D),G1(0)=0. By Schwarz lemma again,
|1G(0)|=|(G1)(0)|1.

Then |G(0)|=1 . Then
G(z)=eiτz=ρτ(z).

Which shows that
f=ϕbρτ.

Schwarz-Pick lemma

Suppose that f is an analytic function which maps D=D(0,1) into D , and z1,z2D, w1=f(z1),w2=f(z2) , then

|w1w21w1w¯2||z1z21z1z¯2|,

and
|dw|1|w|2|dz|1|z|2.

Construct
ϕ(z)=z+z11+z¯1z,ψ(z)=zw11w¯1z

Then ϕ,ψAut(D) .

And consider ψfϕ , use Schwarz lemma, then the remaining are easy (let z=ϕ1(z2) ).

In the above theorem, we actually define a measure called Poincare measure. Then if that f is an analytic function which maps D=D(0,1) into D <script type="math/tex" id="MathJax-Element-91">D</script>, the Poincare is nonincreasing.

Sure, I would be happy to assist you with that. Parking demand prediction has been an important topic in transportation planning and management for many years. There are numerous methods and models that have been developed to predict parking demand based on various factors, such as land use, demographics, availability of public transportation, and economic indicators. One of the earliest models was the Parking Generation Manual, which was first published in 1975 by the Institute of Transportation Engineers. This model used regression analysis to predict parking demand based on land use type and square footage. However, this model has been criticized for being too simplistic and not accounting for other factors that may affect parking demand. In recent years, more advanced models have been developed using machine learning and artificial intelligence techniques. These models can incorporate a wider range of factors and make more accurate predictions of parking demand. For example, the University of California, San Diego developed a model that uses neural networks and decision trees to predict parking demand based on a variety of factors, including weather, day of the week, and time of day. Overall, the literature suggests that accurate parking demand prediction is crucial for effective transportation planning and management. Advanced modeling techniques are needed to fully capture the complex factors that affect parking demand, and further research is needed to refine and improve these models.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值