凸集的分离定理

Rn 中,我们有个直观的事实是:一个超平面(必须是 n-1 维的)将整个空间分为两个部分,也就是说这个超平面将 Rn 分成了两个闭的半空间,这两个闭的半空间称为与H相关的闭的半空间。同样的可以定义与H相关的两个开的半空间。

(一 ) 定义:

1.1称一个超平面H可以分离(separate)两个非空的集合 C1 , C2 ,当 C1 C2 分别包含在两个与H相关的闭的半空间中。

1.2 如果H可以分离 C1,C2 ,并且 C1,C2 不同时包含在H中,此时称H可以正常分离(separate properly) C1,C2

1.3 如果存在 ϵ>0 使得 C1+ϵB C2+ϵB 分别在与H相关的两个开的半空间中,则称H可以强分离(separate strongly) C1,C2 .

(二)关于凸集的一些性质:(都可以根据定义直接验证)

2.1 C是凸集,那么有 :

cl(riC)=clCri(clC)=riC

2.2 C是凸集,A是一个从 Rn Rm 的线性变换,那么有:
ri(AC)=A(riC)A(clC)cl(AC)

2.3 (作为2.2的推论)令
A:(x1,x2)x1+x2

这时 C1+C2=A(C1C2) ,那么有:
ri(C1+C2)=riC1+riC2clC1+clC2cl(C1+C2)

(三)几种分离情况的刻画: (对于一般的集合,不一定是凸集)

定理1. C1,C2 是非空集合,存在将 C1,C2 正常分离的超平面的充分必要条件是存在一个向量 b 使得满足下面两个条件:
(a) inf{<x,b>|xC1}sup{<x,b>|xC2}
(b) sup{<x,b>|xC1}>inf{<x,b>|xC2}
存在将 C1,C2 强分离的超平面的充分必要条件是存在一个向量 b 使得满足下面的条件:
(c)inf{<x,b>|xC1}>sup{<x,b>|xC2}

注:这个定理很直观,证明只需用定义就能完成。但是却很重要:从上面可以看出, 两个集合是否能分离是一个存在性问题,所以它将会在证明存在性的命题中发挥重要作用;通常我们有一个向量 b 满足一些性质,且我们可以由这些性质构造两个凸集,那么这是向量b 的存在性就等价于分离超平面的存在性。这是处理问题的一个思路。

(四)构造分离超平面的一般思路

这是一个非常基本的问题,一种思路是从所有的超平面里面选择满足条件的(利用选择公理),但是不具有可操作性。下面介绍有限步内可以终止的思路。

定理2. Rn 中,C是非空,相对开的凸集,M是一个与C不想交的非空仿射集(假设M不是n-1维的)。那么存在一个包含M的超平面H使得,与H相关的一个开的半空间包含C。
(H的构造过程):不妨设 0M (否则平移),此时M是子空间
0CM 但是 CCM
M 不是超平面, M 包含一个2维的子空间P
C=P(CM) , 那么 CP 且不包含0
那么我们容易找到包含在P中且通过0的直线L,L与C’ 不交
最后令M=M+L,重复以上过程。

(五)凸集分离的主要定理

定理3. C1,C2 是两个凸集,那么存在正常分离 C1,C2 的超平面当且仅当 riC1riC2= .
证明:令 C=C1C2 , M={0}
再由性质2.3,定理1和定理2.

定理4. C1,C2 是两个凸集,那么存在强分离 C1,C2 的超平面当且仅当 inf{|x1x2||x1C1,x2C2}>0 , 也即: 0cl(C1C2)

定理4. 一个闭的凸集C是所有包含他的闭的半空间的交。
证明:令 C1={a} , C2=C , aC
利用上面的定理即可。
注:令S是任意集合,由于包含S的闭的半空间同时也是包含 C=cl(convS) 的半空间,反之亦然,所以 cl(convS) 是所有包含S的闭的半空间的交。

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值