机器学习第二讲 稀疏学习Lasso Regression和正则化regularization 的Ridge Regression

本文介绍了LASSO(Least Absolute Shrinkage and Selection Operator)和Ridge Regression(岭回归)两种回归方法。LASSO通过添加系数绝对值约束实现变量选择,其损失函数形状导致某些系数可以为0,适合特征选择。而Ridge通过系数平方和约束使系数接近零,但不能为零,适用于特征的平滑。L1正则化(LASSO)倾向于少数非零特征,L2正则化(Ridge)则保留更多接近零的特征。
摘要由CSDN通过智能技术生成

lasso (least absolute shrinkage and selection operator)要是能把全称背下来你能一直记住LASSO的原理是absolute shrinkage以及它有selection的作用。

Lasso来自least squares models(最小二乘法线性回归)
①常规的线性回归的做法是最小化下面这个损失函数:

在这里插入图片描述
②Lasso回归的损失函数则多了一个对于回归系数的约束条件
在这里插入图片描述
③岭回归(Ridge Regression)的损失函数也是添加了对于回归系数的约束条件:
在这里插入图片描述
Lasso回归加的是系数绝对值,而岭回归加的是系数的平方。
很显然,在损失函数中加入系数

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
L2正则化和L1正则化都是为了防止模型的过拟合,但是它们的实现方式不同。L2正则化Ridge回归)通过在损失函数添加L2范数的平方来惩罚模型的复杂度,而L1正则化Lasso回归)则是通过在损失函数添加L1范数来惩罚模型的复杂度。相比于L1正则化,L2正则化有以下好处: 1. L2正则化对异常值不敏感,而L1正则化对异常值非常敏感。这是因为L2正则化是平方项,而L1正则化是绝对值,所以L1正则化会将某些系数压缩到0,从而使得模型更加稀疏,而L2正则化则不会。 2. L2正则化可以解决特征之间相关的问题,而L1正则化不能。这是因为L2正则化是平方项,可以将权重分散到所有特征上,而L1正则化是绝对值,只能将权重分散到部分特征上。 下面是一个使用Ridge回归的L2正则化的例子: ```python from sklearn.linear_model import Ridge from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error # 加载数据集 boston = load_boston() X, y = boston.data, boston.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练模型 ridge = Ridge(alpha=1.0) ridge.fit(X_train, y_train) # 预测并计算均方误差 y_pred = ridge.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("Mean squared error: ", mse) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值