超详细汇总,十大数据处理技巧!!从零基础到精通,收藏这篇就够了!

你好,我是小白~

今天给大家带来的是十大属于处理技巧,涉及到的有:

  1. 缺失值处理(Handling Missing Values)

  2. 数据标准化(Data Normalization)

  3. 数据归一化(Data Scaling)

  4. 类别编码(Categorical Encoding)

  5. 数据降维(Dimensionality Reduction)

  6. 数据去重(Removing Duplicates)

  7. 数据分箱(Data Binning)

  8. 特征选择(Feature Selection)

  9. 数据变换(Data Transformation)

  10. 数据平衡处理(Handling Imbalanced Data)

具体原理和使用方式,下面和大家一起聊聊~

1. 缺失值处理(Handling Missing Values)

介绍

在现实数据集中,缺失值的存在是普遍现象。直接包含缺失值的数据会使机器学习模型无法有效训练,因此常见的缺失值处理方法包括删除缺失值、均值插补、中位数插补、众数插补以及基于回归模型的插补等。

核心点

  • 删除法:直接去掉含有缺失值的行或列。

  • 插补法:使用均值、中位数、众数或回归模型来填补缺失值。

原理

假设我们有一个特征 ,其中存在一些缺失值。最简单的插补方式是用均值来替换缺失值。假设缺失值为 ,则均值插补的公式为:

(用非缺失数据的均值填补缺失值)

可以类似地用中位数或众数来插补。

核心公式

均值插补:

(均值插补公式)

代码示例

import numpy as np   import pandas as pd   import matplotlib.pyplot as plt   from sklearn.impute import SimpleImputer      # 创建虚拟数据集   np.random.seed(0)   data = {'A': [1, 2, np.nan, 4, 5],           'B': [np.nan, 2, 3, 4, 5],           'C': [1, 2, 3, np.nan, 5],           'D': [1, 2, np.nan, np.nan, 5]}      df = pd.DataFrame(data)      # 使用均值插补   imputer = SimpleImputer(strategy='mean')   df_imputed = pd.DataFrame(imputer.fit_transform(df), columns=df.columns)      # 绘制原始数据和填补后的数据对比   fig, ax = plt.subplots(figsize=(10, 6))      # 原始数据   ax.scatter(range(len(df)), df['A'], color='red', label='A: Original', marker='o')   ax.scatter(range(len(df)), df['B'], color='blue', label='B: Original', marker='x')      # 插补后的数据   ax.scatter(range(len(df_imputed)), df_imputed['A'], color='green', label='A: Imputed', marker='s')   ax.scatter(range(len(df_imputed)), df_imputed['B'], color='orange', label='B: Imputed', marker='d')      # 设置图例和标题   ax.legend()   ax.set_title('Original vs Imputed Data (Mean Imputation)')   ax.set_xlabel('Index')   ax.set_ylabel('Value')      plt.show()   

红色和蓝色点表示原始数据中的特征 A 和 B,包含了一些缺失值。

绿色和橙色点表示经过均值插补后的数据,可以看到缺失值被合理填补。

2. 数据标准化(Data Normalization)

介绍

数据标准化是将特征值变换到同一量纲,使得每个特征的均值为 0,标准差为 1。标准化有助于距离度量模型(如 KNN、SVM)的收敛,并使模型不因不同尺度的特征而偏向某些特征。

核心点

  • 目标:让每个特征都具有相同的均值和标准差,消除尺度不同带来的影响。

  • 应用场景:适用于梯度下降算法、距离度量类算法等。

原理

标准化的过程是将每个特征值减去该特征的均值,再除以该特征的标准差,使得每个特征转换后的均值为 0,方差为 1。

核心公式

假设 是一个特征,标准化的公式为:

其中, 是均值, 是标准差。

均值 :

标准差 :

代码示例

import numpy as np   import pandas as pd   import matplotlib.pyplot as plt   from sklearn.preprocessing import StandardScaler      # 创建虚拟数据集   np.random.seed(42)   data = np.random.randint(1, 100, size=(10, 2))   df = pd.DataFrame(data, columns=['Feature1', 'Feature2'])      # 标准化处理   scaler = StandardScaler()   df_scaled = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)      # 绘制原始数据与标准化后的数据对比   fig, ax = plt.subplots(figsize=(10, 6))      # 原始数据   ax.scatter(range(len(df)), df['Feature1'], color='red', label='Feature1: Original', marker='o')   ax.scatter(range(len(df)), df['Feature2'], color='blue', label='Feature2: Original', marker='x')      # 标准化后的数据   ax.scatter(range(len(df_scaled)), df_scaled['Feature1'], color='green', label='Feature1: Scaled', marker='s')   ax.scatter(range(len(df_scaled)), df_scaled['Feature2'], color='orange', label='Feature2: Scaled', marker='d')      # 设置图例和标题   ax.legend()   ax.set_title('Original vs Scaled Data (Standardization)')   ax.set_xlabel('Index')   ax.set_ylabel('Value')      plt.show()   

红色和蓝色点表示原始数据的两个特征,特征值范围较大。

绿色和橙色点表示经过标准化后的数据,特征值缩放至均值为 0,方差为 1。

3. 数据归一化(Data Scaling)

介绍

数据归一化是将特征缩放到一个固定的范围内,通常为 [0, 1]。这在神经网络或距离度量类模型中尤为重要,因为模型可能对特征的量纲差异非常敏感。

核心点

  • 目标:将特征值缩放到同一范围内,消除不同特征之间量级差异对模型的影响。

  • 应用场景:适用于神经网络、KNN 等对量纲敏感的算法。

原理

归一化将特征按比例缩放到特定区间(如 [0, 1])。最常见的方法是 min-max scaling,它根据每个特征的最小值和最大值进行缩放。

核心公式

假设特征 ,归一化的公式为:

其中, 和 分别是特征的最小值和最大值。

代码示例

import numpy as np   import pandas as pd   import matplotlib.pyplot as plt   from sklearn.preprocessing import MinMaxScaler      # 创建虚拟数据集   data = np.random.randint(1, 100, size=(10, 2))   df = pd.DataFrame(data, columns=['Feature1', 'Feature2'])      # 归一化处理   scaler = MinMaxScaler()   df_scaled = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)      # 绘制原始数据与归一化后的数据对比   fig, ax = plt.subplots(figsize=(10, 6))      # 原始数据   ax.scatter(range(len(df)), df['Feature1'], color='red', label='Feature1: Original', marker='o')   ax.scatter(range(len(df)), df['Feature2'], color='blue', label='Feature2: Original', marker='x')      # 归一化后的数据         ax.scatter(range(len(df_scaled)), df_scaled['Feature1'], color='green', label='Feature1: Scaled', marker='s')   ax.scatter(range(len(df_scaled)), df_scaled['Feature2'], color='orange', label='Feature2: Scaled', marker='d')      # 设置图例和标题   ax.legend()   ax.set_title('Original vs Scaled Data (Normalization)')   ax.set_xlabel('Index')   ax.set_ylabel('Value')      plt.show()   

红色和蓝色点表示原始数据,数据的范围较广。

绿色和橙色点表示归一化后的数据,数据范围被缩放至 [0, 1]。

4. 类别编码(Categorical Encoding)

介绍

在处理类别数据时,常用的编码方法包括标签编码和独热编码。独热编码(One-Hot Encoding)是将类别数据转化为二进制向量的过程。

核心点

  • 目标:将类别型特征转化为数值型特征,适用于大多数机器学习模型。

  • 应用场景:常用于回归和分类任务中对离散变量的处理。

原理

假设类别数据 ,独热编码将每个类别 转换为一个长度为 的向量,其中只有第 位为 1,其余为 0。

核心公式

独热编码公式

其中, 的位置对应类别 的索引。

代码示例

import pandas as pd   import matplotlib.pyplot as plt   from sklearn.preprocessing import OneHotEncoder      # 创建虚拟数据集   data = {'Category': ['A', 'B', 'C', 'A', 'B']}   df = pd.DataFrame(data)      # 独热编码   encoder = OneHotEncoder(sparse=False)   encoded_data = encoder.fit_transform(df[['Category']])   df_encoded = pd.DataFrame(encoded_data, columns=encoder.categories_)      # 可视化原始数据与独热编码后的数据对比   fig, ax = plt.subplots(figsize=(8, 4))      ax.matshow(encoded_data, cmap='coolwarm')   ax.set_title('One-Hot Encoding Representation')   plt.xlabel('Encoded Categories')   plt.ylabel('Samples')      plt.show()   

矩阵图展示了类别变量通过独热编码转化为二进制矩阵的过程。

5. 数据分箱(Binning)

介绍

数据分箱是一种将连续特征离散化的方法,通过将数值型数据划分为多个区间,将其转换为类别型数据。这在处理有序的连续数据时非常有用,能够减少数据的复杂性,增强模型的稳定性。

核心点

  • 目标:将连续型变量分成多个类别,减少特征的噪声,并简化特征分布。

  • 应用场景:适用于回归问题、决策树模型等,尤其是在特征数据存在极值时。

原理

假设特征 是一个连续变量,分箱的过程是将特征 划分为 个区间 ,每个 被映射到某个区间。

可以采用等宽分箱或等频分箱:

  • 等宽分箱:将数据按相等区间长度进行划分。

  • 等频分箱:将数据按相等频率进行划分。

核心公式

等宽分箱公式

其中 和 分别是特征 的最小值和最大值, 是分箱的数量。

等频分箱公式:按排序后的数值均匀划分。

代码示例

# 创建虚拟数据集   data = {'Feature': np.random.randint(0, 100, size=100)}   df = pd.DataFrame(data)      # 等宽分箱   df['Binned'] = pd.cut(df['Feature'], bins=5)      # 等频分箱   df['Binned_freq'] = pd.qcut(df['Feature'], q=5)      # 绘制直方图和分箱后的箱线图   fig, ax = plt.subplots(1, 2, figsize=(14, 6))      # 绘制直方图(原始数据)   ax[0].hist(df['Feature'], bins=20, color='blue', alpha=0.7)   ax[0].set_title('Histogram of Original Data')      # 绘制箱线图(分箱后数据)   df.boxplot(column='Feature', by='Binned', ax=ax[1])   ax[1].set_title('Boxplot of Binned Data (Equal Width)')      plt.suptitle('')   plt.show()   

左侧的直方图显示了原始数据的分布,特征值在 0-100 范围内。

右侧的箱线图展示了等宽分箱后的数据分布,每个区间内数据的变化范围较大,但区间划分明确。

6. 特征选择(Feature Selection)

介绍

特征选择是从原始特征集中选择出最具代表性的一部分特征,去掉冗余的或无关的特征。常用方法包括过滤法、包裹法和嵌入法。

核心点

  • 目标:减少特征空间,降低模型复杂性,提高训练效率,同时减少过拟合风险。

  • 应用场景:适用于高维数据集和存在大量无关特征的任务。

原理

特征选择方法可以分为以下三类:

  1. 过滤法:通过统计指标(如方差、相关系数)选择特征。

  2. 包裹法:通过模型性能(如递归特征消除,RFE)选择特征。

  3. 嵌入法:在模型训练过程中嵌入特征选择,如 L1 正则化中的 LASSO 回归。

核心公式

LASSO 回归(嵌入法)的目标是通过引入 L1 正则化来选择特征,优化目标函数为:

其中, 是正则化强度, 是模型的系数。

当 较大时,某些系数 会被收缩到 0,这相当于选择性地去除了无关特征。

代码示例

import numpy as np   import pandas as pd   from sklearn.datasets import make_regression   from sklearn.linear_model import Lasso   import matplotlib.pyplot as plt      # 创建虚拟数据集   X, y = make_regression(n_samples=100, n_features=10, noise=0.1)      # 使用 LASSO 回归进行特征选择   lasso = Lasso(alpha=0.1)   lasso.fit(X, y)      # 绘制特征重要性图   fig, ax = plt.subplots(figsize=(10, 6))   ax.bar(range(len(lasso.coef_)), lasso.coef_, color='blue')   ax.set_title('Feature Importance (Lasso)')   ax.set_xlabel('Feature Index')   ax.set_ylabel('Coefficient Value')      # 绘制特征值分布图   ax2 = ax.twinx()   ax2.plot(range(len(lasso.coef_)), np.abs(lasso.coef_), 'r--')   ax2.set_ylabel('Absolute Coefficient Value')      plt.show()   

蓝色的柱状图显示了每个特征的系数值,系数为 0 的特征被移除。

红色虚线显示了特征的绝对重要性值,帮助直观了解哪些特征对模型的贡献最大。

7. 特征缩放(Feature Scaling)

介绍

特征缩放是将数据按比例缩放到一个范围内,通常为 [0, 1] 或 [-1, 1]。缩放后的数据可以加快梯度下降算法的收敛速度,避免模型被某些尺度较大的特征支配。

核心点

  • 目标:平衡各特征的量纲,避免某些特征对模型的影响过大。

  • 应用场景:特别适用于基于距离的模型,如 KNN、SVM。

原理

特征缩放与归一化相似,但更多关注的是缩放各特征到一定范围而非严格的归一化。

核心公式

常用的特征缩放公式为 Min-Max Scaling:

代码示例

from sklearn.preprocessing import MinMaxScaler      # 创建虚拟数据集   data = np.random.randint(1, 100, size=(50, 2))   df = pd.DataFrame(data, columns=['Feature1', 'Feature2'])      # 特征缩放   scaler = MinMaxScaler()   df_scaled = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)      # 绘制原始数据与缩放后数据对比   fig, ax = plt.subplots(1, 2, figsize=(12, 6))      # 原始数据散点图   ax[0].scatter(df['Feature1'], df['Feature2'], color='blue', label='Original Data')   ax[0].set_title('Original Data')   ax[0].set_xlabel('Feature 1')   ax[0].set_ylabel('Feature 2')      # 缩放后数据散点图   ax[1].scatter(df_scaled['Feature1'], df_scaled['Feature2'], color='green', label='Scaled Data')   ax[1].set_title('Scaled Data (Min-Max)')   ax[1].set_xlabel('Feature 1')   ax[1].set_ylabel('Feature 2')      plt.show()   

左侧的散点图显示了原始特征数据的分布。

右侧的散点图则展示了经过 Min-Max 缩放后的特征数据,所有数据点被缩放到 [0, 1] 的范围。

8. 主成分分析(Principal Component Analysis, PCA)

介绍

PCA 是一种常用的降维技术,通过线性变换将数据从高维空间映射到低维空间,同时尽可能保留原始数据中的方差。PCA 的目标是找到特征空间中的主成分,这些主成分是数据方差最大的方向。

核心点

  • 目标:通过线性变换将数据降维到更低的维度,同时保留数据的主要变异性。

  • 应用场景:高维数据的降维,特征提取,数据可视化。

原理

PCA 的过程如下:

  1. 中心化数据:对每个特征减去其均值,使得数据的均值为 0。

  2. 计算协方差矩阵:协方差矩阵描述了特征之间的线性关系。

  3. 计算特征值和特征向量:特征值表示主成分的方差大小,特征向量表示主成分的方向。

  4. 选择主成分:选择特征值最大的前 个特征向量作为主成分。

  5. 转换数据:将数据投影到选定的主成分上。

核心公式

协方差矩阵计算

其中, 是中心化后的数据矩阵。

特征值和特征向量

解特征方程:

其中, 是特征值, 是特征向量。

数据转换

其中, 是选择的主成分构成的矩阵。

代码示例

from sklearn.decomposition import PCA   import numpy as np   import matplotlib.pyplot as plt      # 创建虚拟数据集   np.random.seed(0)   X = np.random.rand(100, 3)  # 100 个样本,3 个特征      # PCA 降维   pca = PCA(n_components=2)   X_pca = pca.fit_transform(X)      # 绘制原始数据和 PCA 降维后的数据   fig, ax = plt.subplots(1, 2, figsize=(12, 6))      # 原始数据的散点图   ax[0].scatter(X[:, 0], X[:, 1], c='blue', label='Original Data')   ax[0].set_title('Original Data')   ax[0].set_xlabel('Feature 1')   ax[0].set_ylabel('Feature 2')      # PCA 降维后的散点图   ax[1].scatter(X_pca[:, 0], X_pca[:, 1], c='green', label='PCA Data')   ax[1].set_title('PCA Transformed Data')   ax[1].set_xlabel('Principal Component 1')   ax[1].set_ylabel('Principal Component 2')      plt.show()   

左侧的散点图显示了原始数据在前两个特征上的分布。

右侧的散点图展示了通过 PCA 降维后的数据,数据被投影到两个主成分上,特征维度大大减少但主要的信息被保留。

9. 特征工程(Feature Engineering)

介绍

特征工程是创建新的特征或变换现有特征的过程,以提高模型的表现。这包括特征构造、特征选择、特征缩放等。

核心点

  • 目标:通过创建新的特征或变换特征,增加模型的预测能力。

  • 应用场景:数据预处理、模型优化。

原理

特征工程的步骤通常包括:

  1. 特征构造:基于现有特征创建新特征(如特征交互、组合)。

  2. 特征选择:选择对模型最有用的特征。

  3. 特征转换:如对数变换、平方根变换等,处理特征的非线性关系。

核心公式

特征构造示例(如特征交互): 假设有两个特征 和 ,新的交互特征为:

代码示例

import pandas as pd   import numpy as np   import matplotlib.pyplot as plt      # 创建虚拟数据集   data = {'Feature1': np.random.rand(100), 'Feature2': np.random.rand(100)}   df = pd.DataFrame(data)      # 特征工程:构造特征交互   df['Feature_Interaction'] = df['Feature1'] * df['Feature2']      # 绘制特征原始分布和交互特征   fig, ax = plt.subplots(1, 2, figsize=(12, 6))      # 原始特征的散点图   ax[0].scatter(df['Feature1'], df['Feature2'], c='blue', label='Feature1 vs Feature2')   ax[0].set_title('Original Features')   ax[0].set_xlabel('Feature 1')   ax[0].set_ylabel('Feature 2')      # 交互特征的分布图   ax[1].hist(df['Feature_Interaction'], bins=30, color='green', edgecolor='black')   ax[1].set_title('Feature Interaction')   ax[1].set_xlabel('Feature Interaction Value')   ax[1].set_ylabel('Frequency')      plt.show()   

左侧的散点图展示了原始两个特征的关系。

右侧的直方图展示了新创建的交互特征的分布,这种特征可能捕捉了原始特征之间的交互信息。

10. 异常值检测(Outlier Detection)

介绍

异常值检测是识别数据集中异常点的过程,这些异常点与其他数据点显著不同。常用的方法包括 Z-score、IQR(四分位距)和基于模型的检测方法。

核心点

  • 目标:识别和处理那些与大多数数据点显著不同的异常点。

  • 应用场景:数据清洗、模型提升(移除异常点可能提升模型表现)。

原理

Z-score 方法:计算每个数据点的 Z-score,Z-score 超过某个阈值的数据点被视为异常点。

其中, 是均值, 是标准差。

IQR 方法:计算数据的四分位距(IQR),通常取下限为 ,上限为 。

核心公式

IQR 计算

异常值下限和上限:

下限

上限

代码示例

import pandas as pd   import numpy as np   import matplotlib.pyplot as plt      from scipy import stats      # 创建虚拟数据集   np.random.seed(0)   data = np.random.normal(loc=0, scale=1, size=100)   data_with_outliers = np.concatenate([data, [10, 12, 15]])      # 计算 Z-score   z_scores = stats.zscore(data_with_outliers)      # 使用 IQR 方法检测异常值   Q1 = np.percentile(data_with_outliers, 25)   Q3 = np.percentile(data_with_outliers, 75)   IQR = Q3 - Q1   lower_bound = Q1 - 1.5 * IQR   upper_bound = Q3 + 1.5 * IQR      # 绘制数据和异常值检测   fig, ax = plt.subplots(figsize=(10, 6))      # 数据分布图   ax.hist(data_with_outliers, bins=20, color='blue', edgecolor='black', alpha=0.7, label='Data Distribution')      # 标记异常值   outliers = data_with_outliers[(data_with_outliers < lower_bound) | (data_with_outliers > upper_bound)]   ax.scatter(outliers, np.zeros_like(outliers), color='red', marker='x', label='Outliers')      ax.set_title('Outlier Detection')   ax.set_xlabel('Value')   ax.set_ylabel('Frequency')   ax.legend()      plt.show()   

直方图展示了数据的分布,其中大多数数据点集中在较小的范围内。

红色的标记点表示通过 IQR 方法检测到的异常值,这些点显著偏离了其他数据点的分布。

黑客/网络安全学习路线

对于从来没有接触过黑客/网络安全的同学,目前网络安全、信息安全也是计算机大学生毕业薪资相对较高的学科。

大白也帮大家准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

这也是耗费了大白近四个月的时间,吐血整理,文章非常非常长,觉得有用的话,希望粉丝朋友帮忙点个**「分享」「收藏」「在看」「赞」**

网络安全/渗透测试法律法规必知必会****

今天大白就帮想学黑客/网络安全技术的朋友们入门必须先了解法律法律。

【网络安全零基础入门必知必会】网络安全行业分析报告(01)

【网络安全零基础入门必知必会】什么是黑客、白客、红客、极客、脚本小子?(02)

【网络安全零基础入门必知必会】网络安全市场分类(03)

【网络安全零基础入门必知必会】常见的网站攻击方式(04)

【网络安全零基础入门必知必会】网络安全专业术语全面解析(05)

【网络安全入门必知必会】《中华人民共和国网络安全法》(06)

【网络安全零基础入门必知必会】《计算机信息系统安全保护条例》(07)

【网络安全零基础入门必知必会】《中国计算机信息网络国际联网管理暂行规定》(08)

【网络安全零基础入门必知必会】《计算机信息网络国际互联网安全保护管理办法》(09)

【网络安全零基础入门必知必会】《互联网信息服务管理办法》(10)

【网络安全零基础入门必知必会】《计算机信息系统安全专用产品检测和销售许可证管理办法》(11)

【网络安全零基础入门必知必会】《通信网络安全防护管理办法》(12)

【网络安全零基础入门必知必会】《中华人民共和国国家安全法》(13)

【网络安全零基础入门必知必会】《中华人民共和国数据安全法》(14)

【网络安全零基础入门必知必会】《中华人民共和国个人信息保护法》(15)

【网络安全零基础入门必知必会】《网络产品安全漏洞管理规定》(16)

网络安全/渗透测试linux入门必知必会

【网络安全零基础入门必知必会】什么是Linux?Linux系统的组成与版本?什么是命令(01)

【网络安全零基础入门必知必会】VMware下载安装,使用VMware新建虚拟机,远程管理工具(02)

【网络安全零基础入门必知必会】VMware常用操作指南(非常详细)零基础入门到精通,收藏这一篇就够了(03)

【网络安全零基础入门必知必会】CentOS7安装流程步骤教程(非常详细)零基入门到精通,收藏这一篇就够了(04)

【网络安全零基础入门必知必会】Linux系统目录结构详细介绍(05)

【网络安全零基础入门必知必会】Linux 命令大全(非常详细)零基础入门到精通,收藏这一篇就够了(06)

【网络安全零基础入门必知必会】linux安全加固(非常详细)零基础入门到精通,收藏这一篇就够了(07)

网络安全/渗透测试****计算机网络入门必知必会****

【网络安全零基础入门必知必会】TCP/IP协议深入解析(非常详细)零基础入门到精通,收藏这一篇就够了(01)

【网络安全零基础入门必知必会】什么是HTTP数据包&Http数据包分析(非常详细)零基础入门到精通,收藏这一篇就够了(02)

【网络安全零基础入门必知必会】计算机网络—子网划分、子网掩码和网关(非常详细)零基础入门到精通,收藏这一篇就够了(03)

网络安全/渗透测试入门之HTML入门必知必会

【网络安全零基础入门必知必会】什么是HTML&HTML基本结构&HTML基本使用(非常详细)零基础入门到精通,收藏这一篇就够了1

【网络安全零基础入门必知必会】VScode、PhpStorm的安装使用、Php的环境配置,零基础入门到精通,收藏这一篇就够了2

【网络安全零基础入门必知必会】HTML之编写登录和文件上传(非常详细)零基础入门到精通,收藏这一篇就够了3

网络安全/渗透测试入门之Javascript入门必知必会

【网络安全零基础入门必知必会】Javascript语法基础(非常详细)零基础入门到精通,收藏这一篇就够了(01)

【网络安全零基础入门必知必会】Javascript实现Post请求、Ajax请求、输出数据到页面、实现前进后退、文件上传(02)

网络安全/渗透测试入门之Shell入门必知必会

【网络安全零基础入门必知必会】Shell编程基础入门(非常详细)零基础入门到精通,收藏这一篇就够了(第七章)

网络安全/渗透测试入门之PHP入门必知必会

【网络安全零基础入门】PHP环境搭建、安装Apache、安装与配置MySQL(非常详细)零基础入门到精通,收藏这一篇就够(01)

【网络安全零基础入门】PHP基础语法(非常详细)零基础入门到精通,收藏这一篇就够了(02)

【网络安全零基础入门必知必会】PHP+Bootstrap实现表单校验功能、PHP+MYSQL实现简单的用户注册登录功能(03)

网络安全/渗透测试入门之MySQL入门必知必会

【网络安全零基础入门必知必会】MySQL数据库基础知识/安装(非常详细)零基础入门到精通,收藏这一篇就够了(01)

【网络安全零基础入门必知必会】SQL语言入门(非常详细)零基础入门到精通,收藏这一篇就够了(02)

【网络安全零基础入门必知必会】MySQL函数使用大全(非常详细)零基础入门到精通,收藏这一篇就够了(03)

【网络安全零基础入门必知必会】MySQL多表查询语法(非常详细)零基础入门到精通,收藏这一篇就够了(04)

****网络安全/渗透测试入门之Python入门必知必会

【网络安全零基础入门必知必会】之Python+Pycharm安装保姆级教程,Python环境配置使用指南,收藏这一篇就够了【1】

【网络安全零基础入门必知必会】之Python编程入门教程(非常详细)零基础入门到精通,收藏这一篇就够了(2)

python开发之手写第一个python程序

python开发笔记之变量

python基础语法特征

python开发数据类型

python开发笔记之程序交互

python入门教程之python开发学习笔记基本数据类型

python入门教程之python开发笔记之格式化输出

python入门教程之python开发笔记基本运算符

python入门教程python开发基本流程控制if … else

python入门教程之python开发笔记流程控制之循环

python入门之Pycharm开发工具的使用

python入门教程之python字符编码转换

python入门之python开发字符编码

python入门之python开发基本数据类型数字

python入门python开发基本数据类型字符串

python入门python开发基本数据类型列表

python入门python开发基本数据类型

python入门教程之python开发可变和不可变数据类型和hash

python入门教程python开发字典数据类型

python入门之python开发笔记基本数据类型集合

python开发之collections模块

python开发笔记之三元运算

【网络安全零基础入门必知必会】之10个python爬虫入门实例(非常详细)零基础入门到精通,收藏这一篇就够了(3)

****网络安全/渗透测试入门之SQL注入入门必知必会

【网络安全渗透测试零基础入门必知必会】之初识SQL注入(非常详细)零基础入门到精通,收藏这一篇就够了(1)

【网络安全渗透测试零基础入门必知必会】之SQL手工注入基础语法&工具介绍(2)

【网络安全渗透测试零基础入门必知必会】之SQL注入实战(非常详细)零基础入门到精通,收藏这一篇就够了(3)

【网络安全渗透测试零基础入门必知必会】之SQLmap安装&实战(非常详细)零基础入门到精通,收藏这一篇就够了(4)

【网络安全渗透测试零基础入门必知必会】之SQL防御(非常详细)零基础入门到精通,收藏这一篇就够了(4)

****网络安全/渗透测试入门之XSS攻击入门必知必会

【网络安全渗透测试零基础入门必知必会】之XSS攻击基本概念和原理介绍(非常详细)零基础入门到精通,收藏这一篇就够了(1)

网络安全渗透测试零基础入门必知必会】之XSS攻击获取用户cookie和用户密码(实战演示)零基础入门到精通收藏这一篇就够了(2)

【网络安全渗透测试零基础入门必知必会】之XSS攻击获取键盘记录(实战演示)零基础入门到精通收藏这一篇就够了(3)

【网络安全渗透测试零基础入门必知必会】之xss-platform平台的入门搭建(非常详细)零基础入门到精通,收藏这一篇就够了4

【网络安全渗透测试入门】之XSS漏洞检测、利用和防御机制XSS游戏(非常详细)零基础入门到精通,收藏这一篇就够了5

****网络安全/渗透测试入门文件上传攻击与防御入门必知必会

【网络安全渗透测试零基础入门必知必会】之什么是文件包含漏洞&分类(非常详细)零基础入门到精通,收藏这一篇就够了1

【网络安全渗透测试零基础入门必知必会】之cve实际漏洞案例解析(非常详细)零基础入门到精通, 收藏这一篇就够了2

【网络安全渗透测试零基础入门必知必会】之PHP伪协议精讲(文件包含漏洞)零基础入门到精通,收藏这一篇就够了3

【网络安全渗透测试零基础入门必知必会】之如何搭建 DVWA 靶场保姆级教程(非常详细)零基础入门到精通,收藏这一篇就够了4

【网络安全渗透测试零基础入门必知必会】之Web漏洞-文件包含漏洞超详细全解(附实例)5

【网络安全渗透测试零基础入门必知必会】之文件上传漏洞修复方案6

****网络安全/渗透测试入门CSRF渗透与防御必知必会

【网络安全渗透测试零基础入门必知必会】之CSRF漏洞概述和原理(非常详细)零基础入门到精通, 收藏这一篇就够了1

【网络安全渗透测试零基础入门必知必会】之CSRF攻击的危害&分类(非常详细)零基础入门到精通, 收藏这一篇就够了2

【网络安全渗透测试零基础入门必知必会】之XSS与CSRF的区别(非常详细)零基础入门到精通, 收藏这一篇就够了3

【网络安全渗透测试零基础入门必知必会】之CSRF漏洞挖掘与自动化工具(非常详细)零基础入门到精通,收藏这一篇就够了4

【网络安全渗透测试零基础入门必知必会】之CSRF请求伪造&Referer同源&置空&配合XSS&Token值校验&复用删除5

****网络安全/渗透测试入门SSRF渗透与防御必知必会

【网络安全渗透测试零基础入门必知必会】之SSRF漏洞概述及原理(非常详细)零基础入门到精通,收藏这一篇就够了 1

【网络安全渗透测试零基础入门必知必会】之SSRF相关函数和协议(非常详细)零基础入门到精通,收藏这一篇就够了2

【网络安全渗透测试零基础入门必知必会】之SSRF漏洞原理攻击与防御(非常详细)零基础入门到精通,收藏这一篇就够了3**
**

****网络安全/渗透测试入门XXE渗透与防御必知必会

【网络安全渗透测试零基础入门必知必会】之XML外部实体注入(非常详细)零基础入门到精通,收藏这一篇就够了1

网络安全渗透测试零基础入门必知必会】之XXE的攻击与危害(非常详细)零基础入门到精通,收藏这一篇就够了2

【网络安全渗透测试零基础入门必知必会】之XXE漏洞漏洞及利用方法解析(非常详细)零基础入门到精通,收藏这一篇就够了3

【网络安全渗透测试零基础入门必知必会】之微信XXE安全漏洞处理(非常详细)零基础入门到精通,收藏这一篇就够了4

****网络安全/渗透测试入门远程代码执行渗透与防御必知必会

【网络安全渗透测试零基础入门必知必会】之远程代码执行原理介绍(非常详细)零基础入门到精通,收藏这一篇就够了1

【网络安全零基础入门必知必会】之CVE-2021-4034漏洞原理解析(非常详细)零基础入门到精通,收藏这一篇就够了2

【网络安全零基础入门必知必会】之PHP远程命令执行与代码执行原理利用与常见绕过总结3

【网络安全零基础入门必知必会】之WEB安全渗透测试-pikachu&DVWA靶场搭建教程,零基础入门到精通,收藏这一篇就够了4

****网络安全/渗透测试入门反序列化渗透与防御必知必会

【网络安全零基础入门必知必会】之什么是PHP对象反序列化操作(非常详细)零基础入门到精通,收藏这一篇就够了1

【网络安全零基础渗透测试入门必知必会】之php反序列化漏洞原理解析、如何防御此漏洞?如何利用此漏洞?2

【网络安全渗透测试零基础入门必知必会】之Java 反序列化漏洞(非常详细)零基础入门到精通,收藏这一篇就够了3

【网络安全渗透测试零基础入门必知必会】之Java反序列化漏洞及实例解析(非常详细)零基础入门到精通,收藏这一篇就够了4

【网络安全渗透测试零基础入门必知必会】之CTF题目解析Java代码审计中的反序列化漏洞,以及其他漏洞的组合利用5

网络安全/渗透测试**入门逻辑漏洞必知必会**

【网络安全渗透测试零基础入门必知必会】之一文带你0基础挖到逻辑漏洞(非常详细)零基础入门到精通,收藏这一篇就够了

网络安全/渗透测试入门暴力猜解与防御必知必会

【网络安全渗透测试零基础入门必知必会】之密码安全概述(非常详细)零基础入门到精通,收藏这一篇就够了1

【网络安全渗透测试零基础入门必知必会】之什么样的密码是不安全的?(非常详细)零基础入门到精通,收藏这一篇就够了2

【网络安全渗透测试零基础入门必知必会】之密码猜解思路(非常详细)零基础入门到精通,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之利用Python暴力破解邻居家WiFi密码、压缩包密码,收藏这一篇就够了4

【网络安全渗透测试零基础入门必知必会】之BurpSuite密码爆破实例演示,零基础入门到精通,收藏这一篇就够了5

【网络安全渗透测试零基础入门必知必会】之Hydra密码爆破工具使用教程图文教程,零基础入门到精通,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之暴力破解medusa,零基础入门到精通,收藏这一篇就够了7

【网络安全渗透测试零基础入门必知必会】之Metasploit抓取密码,零基础入门到精通,收藏这一篇就够了8

Wfuzz:功能强大的web漏洞挖掘工具

****网络安全/渗透测试入门掌握Redis未授权访问漏洞必知必会

【网络安全渗透测试零基础入门必知必会】之Redis未授权访问漏洞,零基础入门到精通,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之Redis服务器被攻击后该如何安全加固,零基础入门到精通,收藏这一篇就够了**
**

网络安全/渗透测试入门掌握**ARP渗透与防御关必知必会**

【网络安全渗透测试零基础入门必知必会】之ARP攻击原理解析,零基础入门到精通,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之ARP流量分析,零基础入门到精通,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之ARP防御策略与实践指南,零基础入门到精通,收藏这一篇就够了

网络安全/渗透测试入门掌握系统权限提升渗透与防御关****必知必会

【网络安全渗透测试零基础入门必知必会】之Windows提权常用命令,零基础入门到精通,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之Windows权限提升实战,零基础入门到精通,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之linux 提权(非常详细)零基础入门到精通,收藏这一篇就够了

网络安全/渗透测试入门掌握Dos与DDos渗透与防御相关****必知必会

【网络安全渗透测试零基础入门必知必会】之DoS与DDoS攻击原理(非常详细)零基础入门到精通,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之Syn-Flood攻击原理解析(非常详细)零基础入门到精通,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之IP源地址欺骗与dos攻击,零基础入门到精通,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之SNMP放大攻击原理及实战演示,零基础入门到精通,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之NTP放大攻击原理,零基础入门到精通,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之什么是CC攻击?CC攻击怎么防御?,零基础入门到精通,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之如何防御DDOS的攻击?零基础入门到精通,收藏这一篇就够了

网络安全/渗透测试入门掌握无线网络安全渗透与防御相****必知必会

【网络安全渗透测试零基础入门必知必会】之Aircrack-ng详细使用安装教程,零基础入门到精通,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之aircrack-ng破解wifi密码(非常详细)零基础入门到精通,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之WEB渗透近源攻击,零基础入门到精通,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之无线渗透|Wi-Fi渗透思路,零基础入门到精通,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之渗透WEP新思路Hirte原理解析,零基础入门到精通,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之WPS的漏洞原理解析,零基础入门到精通,收藏这一篇就够了

网络安全/渗透测试入门掌握木马免杀问题与防御********必知必会

【网络安全渗透测试零基础入门必知必会】之Metasploit – 木马生成原理和方法,零基础入门到精通,收藏这篇就够了

【网络安全渗透测试零基础入门必知必会】之MSF使用教程永恒之蓝漏洞扫描与利用,收藏这一篇就够了

网络安全/渗透测试入门掌握Vulnhub靶场实战********必知必会

【网络安全渗透测试零基础入门必知必会】之Vulnhub靶机Prime使用指南,零基础入门到精通,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之Vulnhub靶场Breach1.0解析,零基础入门到精通,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之vulnhub靶场之DC-9,零基础入门到精通,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之Vulnhub靶机Kioptrix level-4 多种姿势渗透详解,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之Vulnhub靶场PWNOS: 2.0 多种渗透方法,收藏这一篇就够了

网络安全/渗透测试入门掌握社会工程学必知必会

【网络安全渗透测试零基础入门必知必会】之什么是社会工程学?定义、类型、攻击技术,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之社会工程学之香农-韦弗模式,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之社工学smcr通信模型,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之社会工程学之社工步骤整理(附相应工具下载)收藏这一篇就够了

网络安全/渗透测试入门掌握********渗透测试工具使用******必知必会**

2024版最新Kali Linux操作系统安装使用教程(非常详细)零基础入门到精通,收藏这一篇就够了

【网络安全渗透测试零基础入门必知必会】之渗透测试工具大全之Nmap安装使用命令指南,零基础入门到精通,收藏这一篇就够了

2024版最新AWVS安装使用教程(非常详细)零基础入门到精通,收藏这一篇就够了

2024版最新burpsuite安装使用教程(非常详细)零基础入门到精通,收藏这一篇就够了

2024版最新owasp_zap安装使用教程(非常详细)零基础入门到精通,收藏这一篇就够了

2024版最新Sqlmap安装使用教程(非常详细)零基础入门到精通,收藏这一篇就够了

2024版最新Metasploit安装使用教程(非常详细)零基础入门到精通,收藏这一篇就够了

2024版最新Nessus下载安装激活使用教程(非常详细)零基础入门到精通,收藏这一篇就够了

2024版最新Wireshark安装使用教程(非常详细)零基础入门到精通,收藏这一篇就够了

觉得有用的话,希望粉丝朋友帮大白点个**「分享」「收藏」「在看」「赞」**

黑客/网络安全学习包

资料目录

  1. 成长路线图&学习规划

  2. 配套视频教程

  3. SRC&黑客文籍

  4. 护网行动资料

  5. 黑客必读书单

  6. 面试题合集

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

CSDN大礼包:《黑客&网络安全入门&进阶学习资源包》免费分享

1.成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。


因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

CSDN大礼包:《黑客&网络安全入门&进阶学习资源包》免费分享

2.视频教程

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,其中一共有21个章节,每个章节都是当前板块的精华浓缩


因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

CSDN大礼包:《黑客&网络安全入门&进阶学习资源包》免费分享

3.SRC&黑客文籍

大家最喜欢也是最关心的SRC技术文籍&黑客技术也有收录

SRC技术文籍:

黑客资料由于是敏感资源,这里不能直接展示哦!

4.护网行动资料

其中关于HW护网行动,也准备了对应的资料,这些内容可相当于比赛的金手指!

5.黑客必读书单

**

**

6.面试题合集

当你自学到这里,你就要开始思考找工作的事情了,而工作绕不开的就是真题和面试题。

更多内容为防止和谐,可以扫描获取~

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

CSDN大礼包:《黑客&网络安全入门&进阶学习资源包》免费分享

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值