2025版最新初学者怎么入门大语言模型开发?(非常详细)零基础入门到精通,收藏这篇就够了

如果你真心想要入门大型语言模型(LLM),这篇指南将是一个很好的起点。但请记住,深入学习并精通这一领域,最终还是要靠你的不断学习和实践。

基本要求

首先,确保你具备以下基础:

  • 开发语言:Python 是最常用的语言,而 C/C++ 也在性能要求较高时使用。

  • 开发框架和工具库:熟悉如 Numpy、Pandas、Matplotlib 和 Seaborn、Scikit-learn、Pytorch、Tensorflow、Keras 和 Onnx 等工具,这些都是进行数据科学和机器学习项目的重要工具。

  • 数学知识:掌握线性代数、微积分、概率论及凸优化等基本数学知识,是进行算法开发和模型训练的基础。

数学核心内容

  1. 线性代数:

  2. 理解向量、矩阵、特征值和特征向量。

  3. 熟练掌握矩阵乘法、行列式计算及特征值方程 Av=λv, 其中 A是矩阵,v是特征向量,入是特征值

  4. 高数:

  5. 掌握微分和积分基础,包括极限、导数和积分的定义及计算。

  6. 理解基本的微积分定理,如积分和微分的关系。

  7. 概率:

  8. 熟悉概率公理、条件概率、贝叶斯定理。

  9. 理解随机变量、概率分布等基本概念。

  10. 凸优化:

  11. 了解凸集、凸函数的定义,以及梯度下降和拉格朗日乘数法。

  12. 掌握梯度下降的基本更新规则 xn+1=xn_−_α_∇_f(xn),其中 α 是学习率。

基本开发框架和工具库

  1. Numpy:

  2. 用途:进行高效的数值计算。它提供了一个强大的N维数组对象和广泛的函数库,用于执行数组操作。

  3. 重要性:Numpy是几乎所有高级数据分析和机器学习库的底层依赖,包括Pandas和Tensorflow。

  4. Pandas:

  5. 用途:数据处理和分析。Pandas提供了易于使用的数据结构和数据分析工具,特别是对于表格数据非常有效。

  6. 重要性:在数据预处理阶段,Pandas是不可或缺的,用于数据清洗、转换和数据探索。

  7. Matplotlib and Seaborn:

  8. Matplotlib:用于创建静态,动态,交互式的图形和数据可视化。

  9. Seaborn:基于Matplotlib,提供了一种高级接口,更适合制作复杂的统计图表。

  10. 重要性:这些库帮助在模型训练前后对数据和结果进行可视化,从而更好地理解数据特征和模型表现。

  11. Scikit-learn:

  12. 用途:包含广泛的简单和有效的工具用于数据挖掘和数据分析。这是一个为跨越数据挖掘和机器学习提供支持的库。

  13. 重要性:用于快速实现常见的算法,它的设计非常适合作为算法的快速原型开发工具。

  14. Tensorflow/Keras:

  15. Tensorflow:一个开源的软件库,用于进行高性能数值计算,通过数据流图提供了复杂的计算支持。

  16. Keras:作为Tensorflow的一个高级接口,Keras使得创建和测试深度学习模型变得更简单。

  17. 重要性:这些框架用于构建和训练神经网络,特别是在大规模和复杂的网络结构中显示出其强大功能。

  18. PyTorch:

  19. 用途:与Tensorflow类似,PyTorch提供了强大的GPU加速的张量计算以及构建深度学习网络的方便接口。

  20. 重要性:PyTorch特别在研究领域受到欢迎,由于其简单性和灵活性,使得实验和原型开发更为直观。

Transformer基础

做为 LLM 的基础模型,你要想入门,理解Transformer模型是入门LLM的关键!而 Transformer 的基本图像就是下面这样的:

Transformer的结构包括:

  • Attention机制:帮助模型在处理输入的不同部分时分配不同的重视程度。

  • 多头注意力(Multi-head attention):允许模型在多个子空间并行处理信息。

推荐自己手写一个 Transformer 模型,至少要写一个 Attention 的结构。还要看懂下面这个图。你就能体会到一个至简的模型是怎么遵循 Scaling Law的,AGI 可能就在这个简单的重复与变大中了!

代码示例

以下是一个使用Python及其库来实现基础神经网络的例子,该示例覆盖了数据加载、模型定义、训练和测试的基本步骤,但使用的是更直观的Keras库,这是TensorFlow的高级接口。此示例使用了MNIST手写数字数据集,是机器学习中常用的入门级数据集。

简单的大模型编程示例

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers, models

from tensorflow.keras.datasets import mnist

from tensorflow.keras.utils import to_categorical

# 数据加载

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# 数据预处理

train_images = train_images.reshape((60000, 28, 28, 1)).astype(‘float32’) / 255

test_images = test_images.reshape((10000, 28, 28, 1)).astype(‘float32’) / 255

train_labels = to_categorical(train_labels)

test_labels = to_categorical(test_labels)

# 模型定义

model = models.Sequential()

model.add(layers.Conv2D(32, (3, 3), activation=‘relu’, input_shape=(28, 28, 1)))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation=‘relu’))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation=‘relu’))

model.add(layers.Flatten())

model.add(layers.Dense(64, activation=‘relu’))

model.add(layers.Dense(10, activation=‘softmax’))

# 编译模型

model.compile(optimizer=‘adam’,

          loss='categorical\_crossentropy',

          metrics=\['accuracy'\])

# 模型训练

model.fit(train_images, train_labels, epochs=5, batch_size=64)

# 模型测试

test_loss, test_acc = model.evaluate(test_images, test_labels)

print(f"Test accuracy: {test_acc*100:.2f}%, Test loss: {test_loss:.2f}")

注意是每一行

推荐资源

1. deeplearning.ai
  • 特点: 系统的深度学习课程,包括专注于LLMs的内容。

  • 链接: deeplearning.ai (https://www.deeplearning.ai/)

2. Datawhale
  • 特点: 免费的数据科学和AI课程,强调实践和协作学习。

  • 链接: Datawhale(https://datawhale.club/home)

通过结合基础学习、实践应用和不断探索最新研究,你将能够有效地掌握大型语言模型的核心技术和应用。

深入学习大语言模型

掌握大型语言模型(LLM)不仅仅是学习基础知识;随着技术快速进化,维持行业竞争力要求深入理解并应用高级技术。以下是针对不同技术阶段的详细介绍,这些技术从简单到复杂、从成本效率到高成本实施不等,每种技术都有其独特的应用场景和实践价值。

  1. Prompt Engineering(Prompt 工程)

定义与应用

Prompt Engineering 涉及为大型语言模型设计有效的输入(Prompts),以引导模型生成所需的输出。这个过程不仅需要精确表达问题或需求,而且要格式化输出以适应特定应用。

实施细节

  • 指令角色:定义模型应扮演的角色,如助手、顾问等。

  • 精确表达:使用清晰、无歧义的语言来提高响应的相关性和准确性。

  • 输出格式化:指定输出的结构,比如列表、段落或特定格式的数据。

实际应用

通过迭代试验确定最有效的Prompt,实验可能包括不同的语言风格、结构变化及不同的细节级别,以达到最佳性能。

  1. Retrieval-Augmented Generation (RAG)(RAG 技术(检索增强生成))

定义与功能

RAG 通过结合检索器模型和生成器模型来提高回答的精确度和相关性。特别是在处理需要广泛背景知识的复杂查询时,RAG能通过检索相关信息并整合进生成过程中,极大地增强模型的输出质量。

关键组件

  • 检索器:负责从一个大规模的数据集中找到与输入Prompt相关的内容。

  • 生成器:使用检索到的信息来生成连贯、准确的回答。

技术实现

整合检索和生成过程,例如使用Elasticsearch作为检索后端,Transformer模型作为生成器,通过LangChain等工具桥接两者。

  1. Fine-Tuning Techniques (微调技术)

优化策略

在特定任务或数据集上调整已经预训练的模型参数,这一过程叫做Fine-Tuning。通过这种方式,可以使通用模型更好地适应特定应用,提高其效能和准确性。

方法论

  • 数据准备:根据任务需求准备或标注数据。

  • 微调过程:在特定数据集上继续训练模型,通常使用较低的学习率以避免过拟合。

  1. Training LLMs from Scratch (LLM从零开设训练)

开发自定义模型

当预训练的模型不能满足特定需求时,可以从零开始训练自定义的大型语言模型。这需要大量的数据和计算资源,但提供了最高级别的自由度和定制潜力。

实施考量

  • 数据收集:构建覆盖广泛领域的大型数据集。

  • 模型设计:设计适应具体任务的模型架构。

  • 训练策略:配置高性能计算资源,如使用GPU集群进行模型训练。

  1. Deployment and Optimization (LLM 部署及优化技术)

高效部署

将训练好的模型部署到生产环境中,需要优化模型以减少资源消耗和提高响应速度,这包括模型量化、修剪和蒸馏等策略。

优化技术:

  • 量化:减少模型使用的数据位数来降低内存需求和加速计算。

  • 修剪:去除权重中的冗余或不重要的部分来减小模型大小。

  • 蒸馏:训练一个小型模型来模仿大型模型的行为,以减少部署成本。

心理调整与学习策略调整

  1. 聚焦核心技术:

  2. 现象: AI信息海量且复杂,难以把握核心。

  3. 策略: 以大型模型如GPT为中心,构建框架思维,过滤并深入理解主导技术,这些技术形成了AI领域最广泛的共识和应用基础。

  4. 实例: 如学习Transformer架构,关注其在不同应用(如NLP,图像处理)中的变体和优化。

  5. 简化学习过程:

  6. 现象: 初学者面对的学习曲线可能显得陡峭。

  7. 策略: 通过实操(如编写简单的GPT使用案例)和系统化阅读(例如deeplearning.ai教程),快速掌握基础知识和应用。

  8. 实例: 在Colab上运行一个小型GPT模型,实现一个简单的聊天机器人。

  9. 优化日常使用习惯:

  10. 现象: 日常接触大量短期信息,如行业新闻或技术热点。

  11. 策略: 专注于长期技术累积和深度应用,减少对流行但非核心技术(如短期内高层人事变动)的关注。

  12. 实例: 而不是追踪OpenAI的高层变动,应更关注如何GPT技术的迭代对行业的长远影响。

通过上述策略和资源,你将能够高效地入门并精通大型语言模型开发,打下坚实的职业和技术基础。

下面给大家分享一份2025最新版的大模型学习路线,帮助新人小白更系统、更快速的学习大模型!
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享**

一、2025最新大模型学习路线

一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。

我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

L1级别:AI大模型时代的华丽登场

L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。

L2级别:AI大模型RAG应用开发工程

L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3级别:大模型Agent应用架构进阶实践

L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。

L4级别:大模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。

二、大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

三、大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

四、大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

五、大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。


因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值