利用PyTorch实现带注意力机制的序列到序列翻译模型

本文介绍如何使用PyTorch实现一个带有注意力机制的序列到序列(Seq2Seq)翻译模型。该模型可以将法语句子翻译成英语。具体来说,我们将介绍数据预处理、模型构建、训练和测试等步骤。

数据预处理

在开始构建模型之前,我们需要对数据进行预处理。预处理的步骤包括读取数据、构建词典以及将序列转换为张量。

我们先定义一些特殊符号。其中“<pad>”(padding)符号用来添加在较短序列后,直到每个序列等长,而“<bos>”和“<eos>”符号分别表示序列的开始和结束。

接着定义两个辅助函数对后面读取的数据进行预处理。

为了演示方便,我们在这里使用一个很小的法语—英语数据集。在这个数据集里,每一行是一对法语句子和它对应的英语句子,中间使用'\t'隔开。在读取数据时,我们在句末附上“<eos>”符号,并可能通过添加“<pad>”符号使每个序列的长度均为max_seq_len。我们为法语词和英语词分别创建词典。法语词的索引和英语词的索引相互独立。

import collections
import os
import io
import torch
import torchtext.vocab as Vocab
import torch.utils.data as Data

PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'

def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
    all_tokens.extend(seq_tokens)
    seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
    all_seqs.append(seq_tokens)

def build_data(all_tokens, all_seqs):
    vocab = Vocab.Vocab(collections.Counter(all_tokens), specials=[PAD, BOS, EOS])
    indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
    return vocab, torch.tensor(indices)

def read_data(max_seq_len):
    in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []
    with io.open('fr-en-small.txt') as f:
        lines = f.readlines()
    for line in lines:
        in_seq, out_seq = line.rstrip().split('\t')
        in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')
        if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
            continue
        process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)
        process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)
    in_vocab, in_data = build_data(in_tokens, in_seqs)
    out_vocab, out_data = build_data(out_tokens, out_seqs)
    return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data)

max_seq_len = 7
in_vocab, out_vocab, dataset = read_data(max_seq_len)
编码器

编码器将输入序列转换为隐藏状态。我们使用GRU(门控循环单元)来实现编码器。

在编码器中,我们将输入语言的词索引通过词嵌入层得到词的表征,然后输入到一个多层门控循环单元中。正如我们在6.5节(循环神经网络的简洁实现)中提到的,PyTorch的nn.GRU实例在前向计算后也会分别返回输出和最终时间步的多层隐藏状态。其中的输出指的是最后一层的隐藏层在各个时间步的隐藏状态,并不涉及输出层计算。注意力机制将这些输出作为键项和值项。

import torch.nn as nn

class Encoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, drop_prob=0):
        super(Encoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)

    def forward(self, inputs, state):
        embedding = self.embedding(inputs.long()).permute(1, 0, 2)
        return self.rnn(embedding, state)

    def begin_state(self):
        return None

encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
注意力机制

注意力机制用于在解码时对编码器输出的不同时间步进行加权,以便解码器可以更好地生成当前时间步的输出。

import torch.nn.functional as F

def attention_model(input_size, attention_size):
    model = nn.Sequential(
        nn.Linear(input_size, attention_size, bias=False),
        nn.Tanh(),
        nn.Linear(attention_size, 1, bias=False)
    )
    return model

def attention_forward(model, enc_states, dec_state):
    dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
    enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
    e = model(enc_and_dec_states)
    alpha = F.softmax(e, dim=0)
    return (alpha * enc_states).sum(dim=0)
解码器

解码器将编码器的隐藏状态和注意力机制结合起来,生成输出序列。

在解码器的前向计算中,我们先通过刚刚介绍的注意力机制计算得到当前时间步的背景向量。由于解码器的输入来自输出语言的词索引,我们将输入通过词嵌入层得到表征,然后和背景向量在特征维连结。我们将连结后的结果与上一时间步的隐藏状态通过门控循环单元计算出当前时间步的输出与隐藏状态。最后,我们将输出通过全连接层变换为有关各个输出词的预测,形状为(批量大小, 输出词典大小)。

class Decoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, attention_size, drop_prob=0):
        super(Decoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.attention = attention_model(2*num_hiddens, attention_size)
        self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens, num_layers, dropout=drop_prob)
        self.out = nn.Linear(num_hiddens, vocab_size)

    def forward(self, cur_input, state, enc_states):
        c = attention_forward(self.attention, enc_states, state[-1])
        input_and_c = torch.cat((self.embedding(cur_input), c), dim=1)
        output, state = self.rnn(input_and_c.unsqueeze(0), state)
        output = self.out(output).squeeze(dim=0)
        return output, state

    def begin_state(self, enc_state):
        return enc_state
训练模型

我们使用交叉熵损失函数和Adam优化器来训练模型。

在训练函数中,我们需要同时迭代编码器和解码器的模型参数,然后创建模型实例并设置超参数。然后,我们就可以训练模型了。

def batch_loss(encoder, decoder, X, Y, loss):
    batch_size = X.shape[0]
    enc_state = encoder.begin_state()
    enc_outputs, enc_state = encoder(X, enc_state)
    dec_state = decoder.begin_state(enc_state)
    dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
    mask, num_not_pad_tokens = torch.ones(batch_size,), 0
    l = torch.tensor([0.0])
    for y in Y.permute(1, 0):
        dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
        l = l + (mask * loss(dec_output, y)).sum()
        dec_input = y
        num_not_pad_tokens += mask.sum().item()
        mask = mask * (y != out_vocab.stoi[EOS]).float()
    return l / num_not_pad_tokens

def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
    enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
    dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss(reduction='none')
    data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
    for epoch in range(num_epochs):
        l_sum = 0.0
        for X, Y in data_iter:
            enc_optimizer.zero_grad()
            dec_optimizer.zero_grad()
            l = batch_loss(encoder, decoder, X, Y, loss)
            l.backward()
            enc_optimizer.step()
            dec_optimizer.step()
            l_sum += l.item()
        if (epoch + 1) % 10 == 0:
            print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))

embed_size, num_hiddens, num_layers = 64, 64, 2
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 50
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers, drop_prob)
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers, attention_size, drop_prob)
train(encoder, decoder, dataset, lr, batch_size, num_epochs)
测试模型

我们可以使用训练好的模型进行翻译,并计算BLEU分数来评价翻译结果。

def translate(encoder, decoder, input_seq, max_seq_len):
    in_tokens = input_seq.split(' ')
    in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1)
    enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]])
    enc_state = encoder.begin_state()
    enc_output, enc_state = encoder(enc_input, enc_state)
    dec_input = torch.tensor([out_vocab.stoi[BOS]])
    dec_state = decoder.begin_state(enc_state)
    output_tokens = []
    for _ in range(max_seq_len):
        dec_output, dec_state = decoder(dec_input, dec_state, enc_output)
        pred = dec_output.argmax(dim=1)
        pred_token = out_vocab.itos[int(pred.item())]
        if pred_token == EOS:
            break
        else:
            output_tokens.append(pred_token)
            dec_input = pred
    return output_tokens

input_seq = 'ils regardent .'
translate(encoder, decoder, input_seq, max_seq_len)

def bleu(pred_tokens, label_tokens, k):
    len_pred, len_label = len(pred_tokens), len(label_tokens)
    score = math.exp(min(0, 1 - len_label / len_pred))
    for n in range(1, k + 1):
        num_matches, label_subs = 0, collections.defaultdict(int)
        for i in range(len_label - n + 1):
            label_subs[''.join(label_tokens[i: i + n])] += 1
        for i in range(len_pred - n + 1):
            if label_subs[''.join(pred_tokens[i

总结

本次实验中,我们介绍了如何通过编码器—解码器和注意力机制实现机器翻译模型。我们首先读取并预处理了数据,然后构建了包含注意力机制的编码器和解码器模型,并对模型进行了训练和测试。最后,我们通过BLEU评分来评价翻译结果的质量。这种方法在处理序列到序列的任务(如机器翻译)上显示出了很大的潜力。

  • 7
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值