n8n 中文系列教程_08.制作第一个与大模型配合的n8n程序

你是否遇到过需要批量处理大量文本数据,却苦于手动操作效率低下?本文将手把手教你如何用 n8n + 大模型(如Gemini) 搭建自动化流程,实现工单智能分类。即使你是 零基础新手,也能跟着教程完成:

✅ 从Google Sheets读取数据
✅ 调用AI模型自动分析工单
✅ 将结果回填至表格

全程 可视化操作,无需代码,特别适合处理 重复性文本分析任务。文内含 避坑指南 和 Prompt优化技巧,助你快速落地AI自动化!

1. 文章适合人群

本文适合以下读者:

  • 对n8n完全没有了解的新手

  • 运维经验几乎为零的初学者

  • 希望将大模型能力集成到工作流程中的开发者

本文将基于一个实际案例详细讲解n8n的使用方法,不仅会介绍基础操作,还会分享:

  • 开发过程中遇到的典型问题及解决方案

  • 从用户心理角度分析的操作建议

  • 降低n8n学习曲线的实用技巧

2. 环境准备

在开始前,请确保你已经:

  1. 购买了n8n官方云服务版

  2. 或在服务器上部署了n8n(部署方法见:n8n 中文系列教程_06.选择适合的 n8n 安装部署方式:完整指南-CSDN博客

重要提示:本文涉及的程序需要使用Google API,请提前准备好相关账号和访问权限。

工作思路

程序设计原则

  1. 免费:尽量使用免费的 API;
  1. 可复用;

工作方法

  1. 一切看不懂的东西,第一时间询问 ChatGPT,比如错误码看不懂,就可以直接问 ChatGPT;

  • 理解 n8n 的界面设计思路,可以阅读上篇分享
    n8n 中文系列教程_07.全面解析n8n界面:从入门到精通-CSDN博客 
  • 每个步骤都要做单步调试;
  • 涉及到大模型的环境,单步调试的循环次数要降低,以节省 API 调用次数;
  • 大模型 API 往往会在其官网提供调试环境,这种调试环境给出的结果和 API 实际调用可能会有出入,所以在调教 Prompt 时,单步调试 + 看 log 是非常有有必要的,值得庆幸的是 n8n 的 log看起来很好懂。

3. 需求场景分析

3.1 业务背景

假设你是一个SaaS系统负责人,面临以下情况:

  • 客户每天产生超过100个疑问,形成工单提交给客服

  • 你计划实施3项系统改进

  • 需要评估这些改进能解决多少现有问题(即能减少多少工单)

3.2 技术需求

本质上,这是一个文本匹配问题

  • 输入:所有工单的聊天记录内容

  • 输出:每条记录与3个已知问题的匹配结果

4. 为什么选择n8n+大模型方案?

4.1 传统方案的局限性

方案问题
直接上传Excel给ChatGPT/Kimi1. RAG读取方式无法保证逐行处理
2. 上下文限制(约3万字/次)
3. 3000工单需循环50次
非结构化数据直接输入1. 大模型幻觉问题
2. 输出结果难以结构化

4.2 n8n方案的优势

  1. 精准控制:每次只处理一个工单,确保质量

  2. 结构化输出:便于后续统计分析

  3. 自动化流程:一次配置,重复使用

  4. 成本优化:仅对必要内容调用大模型API

核心设计原则:将AI作为流程的一部分而非全部,保持人类对关键决策的控制。

5. 完整实现步骤

5.1 第一步:程序触发设置

  1. 创建新Workflow

  2. 选择触发器类型:

    • 手动触发(适合低频批量处理)

    • 定时触发(适合定期执行)

    • 文件变化触发(适合实时处理)

推荐选择:手动触发(每月执行一次)

第一个节点如下图所示:

5.2 第二步:工单数据获取

5.2.1 数据源选择
选项优缺点适用场景
Google Sheets云端协作方便推荐选择
本地文件需服务器访问权限不推荐
5.2.2 Google Sheets配置
  1. 添加"Google Sheets - Get rows in sheet"节点

  2. 配置OAuth2认证:

    • 搜索关键词:"how to create Google sheets OAuth2 single service"

    • 按教程创建API凭证

常见问题解决

  • 权限错误:确保服务账号有编辑权限

  • 读取失败:检查表格URL格式

  1. 测试数据读取:

    • 成功时会显示"X items"(如"7 items")

5.3 第三步:集成大模型

5.3.1 模型选择
  1. 添加"Basic LLM Chain"节点

  2. 推荐模型:

    • Google Gemini(免费额度)

    • OpenAI GPT(需API Key)

免费API获取

  1. 访问Google AI Studio

  2. 创建新Prompt获取API Key

5.3.2 模型配置
  1. 删除默认的Chat Trigger

  2. 设置Model为"Google Gemini Chat Model"

  3. 输入获取的API Key

新添加的 AI 节点默认都会带一个接收聊天消息的触发器,但是在咱们的场景里面,我们就是希望 AI 节点能够处理 Excel 的文件内容即可,所以我们可以把这个触发器删掉。

接下来就是要给 LLM 的节点配置一个大模型的 API,我们点击 Model 的 + 号,并且选择 Google Gemini Chat Model。如果你有别的大模型的 API,也可以直接使用。我们这里选择 Google Gemini 的原因是它有免费的额度。

网络提示:如无法直接访问Google服务,建议使用代理工具如CloseAI或WildCard。

登录到 https://aistudio.google.com/ 可以在 google 的 AIStuido 白嫖免费的 Gemini 的 API;

注意,Gemini 目前只面向特定区域的用户开放 API,所以你一定要确保自己上网的方式是正确的。

然后把创建好的密钥填写到 n8n 的界面上面去,这样模型就挂载好了。

5.4 第四步:提示词工程

5.4.1 提示词模板

5.4.2 n8n中的变量插入
  1. 选择"Define below"模式

  2. 通过拖拽方式插入变量:

    • 工单编号:从上游节点拖入

    • 工单内容:从上游节点拖入

调试技巧

  1. 先在Google AI Studio测试Prompt

  2. 在n8n中使用"Test Step"功能

  3. 查看Logs中的输入输出

5.5 第五步:结果回写

  1. 添加"Google Sheets - Append or update row"节点

  2. 配置要点:

    • 使用工单编号作为匹配键("use to match"标识)

    • 将大模型输出映射到目标列

  3. 测试确认:

    • 检查Sheets中数据是否更新

    • 验证数据对应关系是否正确

隐式参数传递:n8n会自动维护跨节点的数据关联,无需手动匹配。

现在我们获得了已经大模型打标的结果,下一步就应该讲这些结果回填到 Sheets 之中。

所以我们需要在大模型节点的下一个步骤新增一个 Google Sheets 的节点。和上一个节点有所不同,上个节点我们的需求是读取这个 Sheets 页的全部数据,这次我们需要更新数据,给每一行数据附上大模型打标的结果。

所以我们需要根据自己的需求选择 Append or update row in sheet 的选项。由于 Token 之前已经配置过了,所以这次这个节点不需要再额外配置 Token。

选择这个节点界面如下图所示:

将大模型的结果填充到表格内,首先需要一列数据,比如工单编号作为唯一的关联标识,不然程序就不知道该将哪个值填充到哪里去。

这个时候就会发现大模型输出的时候只输出了问题分类,没有输出编号,但是这个时候不需要调整 Prompt,因为 n8n 自带了隐式参数传递。

在选择入参区域的变量时,不仅仅可以选择上一个节点的变量,也可以选择上上个,上上上个等所有前序节点的变量。这些复数个数据之间经过多个程序处理传递,但是 n8n 会在系统内部自动把他们关联起来,确保他们内部是唯一关联的,所以你不需要担心数据会不会“串错”。这就是 n8n 内部很重要的隐式传递的设计思路。

所以我们可以选择 Key A 作为关联的变量,同时把上上个节点读取到的 Key_A 的值填充进去,选中作为关联键的变量会有一个 useing to match 的标识。

然后把大模型的结果填充到 Key_B 之中去,这样程序就会把 Key_B 的值替换成大模型输出的 Text 信息。

点击 Test Step,程序开始之行,Key B 的数据已经被得到了替换。

打开 Google Sheets,也会发现已经被替换了。

替换前替换后

6. n8n核心设计哲学

通过本案例,可以体会n8n的三大核心理念:

6.1 循环优先设计

  • 自动处理批量数据

  • 可视化显示处理进度(如"X items")

  • 极大提升重复任务效率

6.2 隐式参数传递

  • 自动维护数据关联

  • 支持跨节点变量引用

  • 消除手动匹配的繁琐

6.3 开发友好特性

  1. 单步调试

    • 每个节点独立测试

    • 快速定位问题

  2. 日志清晰

    • 完整记录输入输出

    • 便于Prompt调优

  3. 可视化编排

    • 直观的流程图展示

    • 降低理解成本

7. 进阶建议

  1. 性能优化

    • 批量处理时限制并发数

    • 设置适当的API调用间隔

  2. 错误处理

    • 添加重试机制

    • 设置失败通知

  3. 扩展应用

    • 将结果导入BI工具分析

    • 添加自动报告生成功能

8. 总结

通过一个实际的工单分类场景,完整展示了:

  1. n8n基础操作流程

  2. 大模型集成方法

  3. 典型问题解决方案

  4. 最佳实践建议

核心价值:通过n8n的可视化编排能力,将大模型的智能与结构化数据处理完美结合,创造出远超单独使用ChatGPT的实用价值。



 资料推荐

  1. n8n 中文系列教程_07.全面解析n8n界面:从入门到精通-CSDN博客
  2. n8n 中文系列教程_06.选择适合的 n8n 安装部署方式:完整指南-CSDN博客
  3. n8n 中文系列教程_05.如何在本机部署/安装 n8n(详细图文教程)-CSDN博客
  4. 💡大模型中转API推荐
  5. ✨中转使用教程


希望这篇指南能帮助你快速上手n8n,开启自动化工作流之旅!如何部署请参考本专栏05-06篇.有用的话记得点赞收藏噜!

<think>嗯,用户想了解n8n如何语言模型集成或使用。首先,我需要回顾一下n8n的基本功能,它是一个工作流自动化工具,支持各种节点的连接。然后,大语言模型比如GPT、Claude或者开源的如LLAMA,这些模型通常通过API或者本地部署来调用。 根据用户提供的引用,特别是引用[1]提到Elastic集成了AI助手来处理安全威胁和查询生成,这可能类似于n8n的集成方式。引用[3]提到Haystack框架使用LLMsHugging Face、OpenAI等集成,这可能提示n8n可以通过HTTP请求节点调用这些API。 接下来,我需要考虑n8n的具体集成方法。首先,使用HTTP节点调用OpenAI的API,比如发送POST请求到他们的聊天接口。然后,处理返回的JSON数据,提取生成的文本。另外,用户可能想用本地部署的模型,比如通过Hugging Face的Inference API节点,或者搭建自定义API服务,用Python或JavaScript编写脚本节点。 还需要考虑数据处理和流程优化,比如错误处理、速率限制、结果缓存等。用户可能还关心实际应用场景,比如自动化客服、内容生成、数据分析等。此外,安全性和权限管理也很重要,比如正确存储API密钥。 最后,根据用户之前的引用,他们可能对性能分析和优化方法感兴趣,所以可能需要建议监控工作流执行时间、处理错误日志,以及如何扩展模型能力,比如结合RAG或知识库。需要确保回答结构清晰,分步骤说明,并提供实际示例,如代码片段或配置步骤,帮助用户理解如何操作。</think>### n8n语言模型集成方法 n8n作为开源工作流自动化平台,可通过以下方式LLM集成: #### 1. 原生HTTP请求集成 通过HTTP Request节点直接调用大模型API: ```json { "nodes": [ { "parameters": { "url": "https://api.openai.com/v1/chat/completions", "headers": { "Authorization": "Bearer YOUR_API_KEY" }, "body": { "model": "gpt-4", "messages": [{"role": "user","content": "{{$json.input}}"}] } }, "name": "OpenAI API", "type": "n8n-nodes-base.httpRequest" } ] } ``` 支持主流的LLM服务商包括: - OpenAI GPT系列 - Anthropic Claude - Cohere - Hugging Face Inference API[^3] #### 2. 本地模型部署集成 对私有化部署的大模型,可通过以下方式接入: ```python # 自定义代码节点示例 from transformers import pipeline def process_input(item): generator = pipeline('text-generation', model='local/llama-2-7b') return { "output": generator(item.json.input)[0]['generated_text'] } ``` 需注意模型推理的硬件要求[^2] #### 3. 中间件桥接模式 通过Haystack等框架建立中间层: ```mermaid graph LR A[n8n工作流] --> B[Haystack管道] B --> C[Elasticsearch] B --> D[LLM推理服务] ``` 此架构支持复杂NLP任务处理[^3] ### 典型应用场景 1. **智能客服自动化** - 对话日志分析 → 生成服务报告 - 自动工单分类 → 建议解决方案 2. **内容生成流水线** ``` 用户输入 → 敏感词过滤 → LLM内容生成 → 人工审核 → 发布 ``` 3. **数据分析增强** 使用SQL生成节点: ```sql -- LLM自动生成的查询示例 SELECT DATE_TRUNC('week', created_at) AS week, COUNT(DISTINCT user_id) AS active_users FROM user_activity WHERE {{LLM生成的过滤条件}} ``` ### 配置注意事项 1. **权限管理** - 使用n8n Credentials系统加密存储API密钥 - 设置细粒度节点执行权限 2. **性能优化** - 启用工作流缓存(对重复请求) - 配置合理的超时时间(建议5-30秒) - 使用流式响应处理长文本生成 3. **错误处理** ```json "errorHandling": { "continueOnFail": true, "retry": { "maxAttempts": 3, "backoffStrategy": "exponential" } } ``` 最新实践建议参考Elastic的AI Assistant实现方案[^1],结合RAG(检索增强生成)模式可显著提升响应准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值