神经网络基础

        神经网络(Neural Network),更准确地说,人工神经网络(Artificial Neural Network),是一类机器学习方法地统称。

1.神经网络

1.1神经元

        神经元(Neuron)是神经网络地基本构成单元。通常情况下,一个神经元通过外部的输入连接接受多个其他神经元的输入信息(数值),经过内部激活函数处理后,将得到的输出输送到其他神经元

神经元

1.2激活函数

        激活函数(Activation Function)是神经元的关键部分,直接决定了神经元输入和输出之间的对应关系。从数学角度看,激活函数可以从以下几个维度进行区分和理解。①是否非线性、②是否连续可导、③是否单调、④取值范围

1.3神经元组织:层

        单个神经元学习复杂模式的能力有限,因此通常需要将多个神经元组织成神经网络。在神经网络中,具有类似功能的神经元聚合成层(Layer)。层可以堪称具有类似性质的神经元的容器,同一层中的神经元,执行类似的操作,不同层之间通过某种方式连接。一个神经网络通常有输入层输出层,输入层神经元接受数据的输入,输出层根据具体人物要求生成相应的输出,输入层和输出层之间的层称为隐藏层(Hidden Layer)。

多层神经网络

2.神经网络训练

2.1损失函数

        神经网络的训练,可以看成在一个庞大的模型空间中搜索最优的参数配置(如连接权重w、偏差b),使得神经网络模型对应的目标函数(Objective Function)最优。如果我们要最小化目标函数,则这个目标函数也可称为代价函数(Cost Function)或损失函数(Loss Function)。由损失函数计算得到的值成为损失(Loss)。

2.2随机梯度下降

        因为神经网络本质上是一个数学函数,将来自输入层神经元对应的输入映射到输出层神经元对应的输出,所以通常这个函数比较复杂,拥有大量的参数。

        神经网络的训练,就是要从庞大的参数孔家中找到一组参数,使神经网络对应的损失函数最小。要找到多参数的最优值,我们需要一个算法可以在参数空间中快速搜索。梯度下降(Gradient Descent)便是我们需要使用的一个优化思想。

2.3反向传播

        在神经网络中,反向传播(Backpropagation)算法是一种用于计算损失函数关于神经网络参数的梯度的有效方法。使用梯度下降算法,可以根据损失函数的导数(梯度)的方向和大小来调整参数。

        反向传播的基本想法是使用链式法则(Chain Rule)来计算每个参数的梯度。具体来说,它将损失函数的梯度从输出层向输入层“反向传播”,然后使用梯度下降算法优化参数。

3.应用领域

        神经网络广泛应用于语音识别、图像识别、自然语言处理、机器人控制等领域。例如,卷积神经网络(Convolutional Neural Network,CNN)在图像识别中表现出色,循环神经网络(Recurrent Neural Network,RNN)在自然语言处理中表现出色。此外,深度学习(Deep Learning)依赖于神经网络的发展,已成为人工智能领域的重要技术之一。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值