##个人学习记录,如有错误,请指正
人工智能技术的核心当然是模型的训练,有了模型我们才能进行预测应用。
要了解机器学习模型,可以从一下几个方面入手:
- 预测函数。从首先预测函数是一个从样本特征到预测值的函数,这个函数告诉了我们是如何预测的。首先函数的形态决定了模型的基本形态,比如线性回归的预测函数就是一次函数,而逻辑斯特回归就采用了逻辑斯特函数。而在这个函数中,又有各种参数,比如一元一次方程y=kx+b中的k决定了直线的斜率,b决定了截距。预测函数中的参数决定了这个模型在对样本进行预测的真正结果。在选定模型的情况下,机器学习的目标就是通过算法得到使预测值最接近真实值的模型参数。因此我们进入下一个主要内容——损失函数。
- 损失函数(cost function)。损失函数需要精确地描述预测值和真实值的差距,因此通常损失函数中会包含我们的预测函数,也就包含模型参数,当然如果我们对函数等效化简,我们也可以不包含预测函数,但是还是会保留模型参数。在得到损失函数后,为了让模型性能最优,我们的目标就是最小化损失函数。
- 训练方法。所谓的训练方法实际上就是求得使损失函数最小的参数的方法。这个部分就是核心中的核心。它决定了我们的模型训练的速度和最终的效果。
对于一个模型,理解了这三个部分,差不多就理解透彻了。