立方度量(Cubic Metric)

立方度量CM是评估功率放大器效率的指标,尤其针对三次非线性影响。它通过归一化电压信号三次方处理后与参考信号对比,反映ACLR问题。峰均功率比PAPR则是另一个关键指标。CM在描述功率放大器的非线性失真方面比PAPR更为精确。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

立方度量,即Cubic Metric (CM),是衡量功率放大器(Power Amplifier)的功率效率降低的指标。除立方度量之外,另一个指标是峰均功率比,即PAPR(Peak to Average Power Ratio)。CM比PAPR更为精确。

在功放电路中,造成ACLR(Adjacent Channel Leakage Ratio,相邻频道泄漏比)的主要原因是功率增益特性中的三次非线性部分。只考虑线性和三次非线性部分的功放增益特性的表达式如下:

v_o(t)=G_1*v_i(t) + G_3 * [v_i(t)]^3

其中,G1 是放大器的线性增益系数,G3 是三次非线性增益系数。这两个增益系数与输入信号无关,只与放大器的设计相关。

### MATLAB 中的三次样条插值方法 在数值计算领域,插值是一种常用的技术,用于估计两个已知数据点之间的未知函数值。MATLAB 提供了多种插值方法,其中三次样条插值(Cubic Spline Interpolation)因其平滑性和准确性而被广泛采用。 #### 使用 `interp1` 函数实现三次样条插值 MATLAB 的内置函数 `interp1` 支持不同的插值方法,其中包括 `'spline'` 方法来执行三次样条插值: ```matlab % 定义原始数据点 x = 0:pi/4:2*pi; y = sin(x); % 插值的新位置 xi = linspace(0, 2*pi, 100); % 执行三次样条插值 yi = interp1(x, y, xi, 'spline'); % 绘制结果图 figure; plot(x, y, 'o', xi, yi); title('Sine Function with Cubic Spline Interpolation'); xlabel('X-axis'); ylabel('Y-axis'); legend('Original Data Points','Interpolated Curve'); grid on; ``` 这段代码展示了如何利用给定的数据集 `(x,y)` 和新的查询点 `xi` 来获得经过三次样条插值后的结果 `yi`[^1]。 #### 创建自定义的三次样条插值器 对于更复杂的场景,可以创建一个专门针对特定需求定制化的三次样条对象: ```matlab % 构建 spline 结构体并求解系数矩阵 cs = csapi(x, y); % 或者使用 cscvn 对于参数化曲线 % 计算新样本点处的插值 vi = fnval(cs, vi); % 显示图形表示 fnplt(cs,'r-',2); hold on; plot(x,y,'bo'); legend('Fitted Spline','Data') ``` 这里使用的 `csapi` 是一种构建自然边界条件下的三次样条的方法之一;另一种方式是通过 `spapi` 设置端点导数约束等其他类型的边界条件。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值