题意
题目的意思挺难懂的,简单的来说,就是判断一个 k k k叉树是否由一个 k − 1 k-1 k−1叉树而来。这里对 k k k叉树的定义是:
- 对于 1 1 1叉树,仅有一个点度数为 3 3 3且度数为 1 1 1的点个数大于等于3。
- 对于 k ( k ≥ 2 ) k(k\geq2) k(k≥2)叉树,是一个点连接 3 3 3个或 3 3 3个以上的 ( k − 1 ) (k-1) (k−1)叉树所构成。
题解
这题主要就是需要找到树根,如果找到了树根那么就可以进行dfs判断是否为合格的k叉树,但如果找树根呢?一种办法是求出树的直径,然后根据直径长度的一半找到树根,还有一种方法便是,由于这颗树是一层一层扩展出去的,所以只要一层一层往里走,就可以找到树根,类似圆慢慢缩小。
因为每层都是一样的,所以dfs判断的话就是递归k层判断即可(注意特殊处理一下最后一层)。
代码
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5+5;
vector<int> G[maxn];
int que[maxn], l,r, de[maxn], pre[maxn];
void add(int f,int t) {
G[f].push_back(t);
}
// 树的直径
int bfs(int o) {
l = r = 0;
que[r++] = o;
memset(de, -1, sizeof de);
de[o] = 0;
pre[o] = -1;
while(l <= r) {
int u = que[l++];
for(int i = 0; i < G[u].size(); ++i) {
int to = G[u][i];
if(de[to] != -1) continue;
pre[to] = u;
de[to] = de[u]+1;
que[r++] = to;
}
}
return que[r-1];
}
// 检验树根
bool check(int o, int fa, int k) {
if(k == 0) {
int son = 0;
for(int i = 0; i < G[o].size(); ++i) {
int to = G[o][i];
if(to == fa) continue;
son++;
}
if(son > 0) return false;
return true;
}
int cnt = 0;
for(int i = 0; i < G[o].size(); ++i) {
int to = G[o][i];
if(to == fa) continue;
if(!check(to, o, k-1)) return false;
cnt++;
}
if(cnt < 3)
return false;
return true;
}
int main() {
int n,k,u,v;
scanf("%d%d", &n, &k);
for(int i = 0; i < n-1; ++i) {
scanf("%d%d", &u, &v);
add(u,v); add(v,u);
}
u = bfs(1);
v = bfs(u);
if(de[v]%2 != 0)
puts("No");
else {
int center = v;
for(int i = 0; i < de[v]/2; ++i)
center = pre[center];
// cout << center << endl;
if(check(center, -1, k))
puts("Yes");
else
puts("No");
}
return 0;
}