优化定时任务调度框架的实现

导读本文介绍了作者优化定时任务调度框架的实现。一起来来看看吧。

项目中需要使用一个简单的定时任务调度的框架,最初直接从GitHub上搜了一个star比较多的,就是https://github.com/robfig/cron,目前有8000+ star。刚开始使用的时候发现问题不大,但是随着单机需要定时调度的任务越来越多,高峰期差不多接近500QPS,随着业务的推广使用,可以预期增长还会比较快,但是已经遇到CPU使用率偏高的问题,通过pprof分析,很多都是在做排序,看了下这个项目的代码,整体执行的过程大概如下:

对所有任务进行排序,按照下次执行时间进行排序
选择数组中第一个任务,计算下次执行时间减去当前时间得到时间t,然后sleep t
然后从数组第一个元素开始遍历任务,如果此任务需要调度的时间 < now,那么就执行此任务,执行之后重新计算这个任务的next执行时间
每次待执行的任务执行完毕之后,都会重新对这个数组进行排序
然后再循环从排好序的数组中找到第一个需要执行的任务去执行。

代码如下:

for {
        // Determine the next entry to run.
        sort.Sort(byTime(c.entries))
        var timer *time.Timer
        if len(c.entries) == 0 || c.entries[0].Next.IsZero() {
            // If there are no entries yet, just sleep - it still handles new entries
            // and stop requests.
            timer = time.NewTimer(100000 * time.Hour)
        } else {
            timer = time.NewTimer(c.entries[0].Next.Sub(now))
        }
        for {
            select {
            case now = <-timer.C:
                now = now.In(c.location)
                c.logger.Info("wake", "now", now)
                // Run every entry whose next time was less than now
                for _, e := range c.entries {
                    if e.Next.After(now) || e.Next.IsZero() {
                        break
                    }
                    c.startJob(e.WrappedJob)
                    e.Prev = e.Next
                    e.Next = e.Schedule.Next(now)
                    c.logger.Info("run", "now", now, "entry", e.ID, "next", e.Next)
                }
            case newEntry := <-c.add:
                timer.Stop()
                now = c.now()
                newEntry.Next = newEntry.Schedule.Next(now)
                c.entries = append(c.entries, newEntry)
                c.logger.Info("added", "now", now, "entry", newEntry.ID, "next", newEntry.Next)
            case replyChan := <-c.snapshot:
                replyChan <- c.entrySnapshot()
                continue
            case <-c.stop:
                timer.Stop()
                c.logger.Info("stop")
                return
            case id := <-c.remove:
                timer.Stop()
                now = c.now()
                c.removeEntry(id)
                c.logger.Info("removed", "entry", id)
            }
            break
        }
    }

问题就显而易见了,执行一个任务(或几个任务)都重新计算next执行时间,重新排序,最坏情况就是每次执行1个任务,排序一遍,那么执行k个任务需要的时间的时间复杂度就是O(k*nlogn),这无疑是非常低效的。

于是想着怎么优化一下这个框架,不难想到每次找最先需要执行的任务就是从一堆任务中找schedule_time最小的那一个(设schedule_time是任务的执行时间),那么比较容易想到的思路就是使用最小堆:

在初始化任务列表的时候就直接构建一个最小堆
每次执行查看peek元素是否需要执行
需要执行就pop堆顶元素,计算next执行时间,重新push入堆
不需要执行就break到外层循环取堆顶元素,计算next_time-now() = need_sleep_time,然后select 睡眠、add、remove等操作。

我修改为min-heap的方式之后,每次添加任务的时候通过堆的属性进行up和down调整,每次添加任务时间复杂度O(logn),执行k个任务时间复杂度是O(klogn)。经过验证线上CPU使用降低4~5倍。CPU从50%左右降低至10%左右。

优化后的代码如下,只是其中一部分。

全部的代码也已经在github上已经创建了一个Fork的仓库并推送上去了,全部单测Case也都PASS。感兴趣可以点过去看。https://github.com/tovenja/cro

for {

// Determine the next entry to run.

// Use min-heap no need sort anymore

// 这里不再需要排序了,因为add的时候直接进行堆调整

//sort.Sort(byTime(c.entries))

var timer *time.Timer

if len(c.entries) == 0 || c.entries[0].Next.IsZero() {

// If there are no entries yet, just sleep - it still handles new entries

// and stop requests.

timer = time.NewTimer(100000 * time.Hour)

} else {

timer = time.NewTimer(c.entries[0].Next.Sub(now))

//fmt.Printf(" %v, %+v\n", c.entries[0].Next.Sub(now), c.entries[0].ID)

}

for {

select {

case now = <-timer.C:

now = now.In(c.location)

c.logger.Info("wake", "now", now)

// Run every entry whose next time was less than now

for {

e := c.entries.Peek()

if e.Next.After(now) || e.Next.IsZero() {

break

}

e = heap.Pop(&c.entries).(*Entry)

c.startJob(e.WrappedJob)

e.Prev = e.Next

e.Next = e.Schedule.Next(now)

heap.Push(&c.entries, e)

c.logger.Info("run", "now", now, "entry", e.ID, "next", e.Next)

}

case newEntry := <-c.add:

timer.Stop()

now = c.now()

newEntry.Next = newEntry.Schedule.Next(now)

heap.Push(&c.entries, newEntry)

c.logger.Info("added", "now", now, "entry", newEntry.ID, "next", newEntry.Next)

case replyChan := <-c.snapshot:

replyChan <- c.entrySnapshot()

continue

case <-c.stop:

timer.Stop()

c.logger.Info("stop")

return

case id := <-c.remove:

timer.Stop()

now = c.now()

c.removeEntry(id)

c.logger.Info("removed", "entry", id)

}

break

}

}

www.linuxprobe.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值