机器学习基础(1) 概述
机器学习概述
机器学习:通过已有的数据, 对未来进行预测的原则,方法和算法。
机器学习的任务:构建模型
y=f(x,ω)
1.
y
:输出
2.
3.
ω
:需要学习的参数
分类和回归
回归(classification):输出
y
是连续的。
分类(regression):输出
有监督学习和无监督学习
有监督学习(supervised learning): 训练集有类别标记(class label)
无监督学习(unsupervised learning): 无类别标记(class label)
半监督学习(semi-supervised learning):有类别标记的训练集,无标记的训练集
线性回归问题定义
训练集合(training set)
X={x⃗ (1),x⃗ (2),...,x⃗ (N)}
和对应的目标数值集合
T={t(1),t(2),...,t(N)}
。其中
x⃗ (i)
表示训练集合中的第i个训练数据(training data)或者训练样本,用向量来表示,因为一个样本可以有多个维度(特征)。
x⃗ (i)j
表示第i个训练样本的第j个特征。
回归问题的任务:学习一个连续函数
y(x)
,对新的输入
x
做出预测
误差函数
误差平方和(sum of square error):
以上内容是基于Christopher M. Bishop的《Pattern Recognition and Machine Learning》部分内容。由于时间原因,更新为不定期。目前内容不全。