机器学习基础(1) 概述

机器学习基础(1) 概述

机器学习概述

机器学习:通过已有的数据, 对未来进行预测的原则,方法和算法。
机器学习的任务:构建模型 y=f(x,ω)
 1. y :输出
 2. x:输入
 3. ω :需要学习的参数

分类和回归

 回归(classification):输出 y 是连续的。
 分类(regression):输出y是离散的。

有监督学习和无监督学习

 有监督学习(supervised learning): 训练集有类别标记(class label)
 无监督学习(unsupervised learning): 无类别标记(class label)
 半监督学习(semi-supervised learning):有类别标记的训练集,无标记的训练集

线性回归问题定义

训练集合(training set) X={x⃗ (1),x⃗ (2),...,x⃗ (N)} 和对应的目标数值集合 T={t(1),t(2),...,t(N)} 。其中 x⃗ (i) 表示训练集合中的第i个训练数据(training data)或者训练样本,用向量来表示,因为一个样本可以有多个维度(特征)。 x⃗ (i)j 表示第i个训练样本的第j个特征。
回归问题的任务:学习一个连续函数 y(x) ,对新的输入 x 做出预测y(x)

误差函数

误差平方和(sum of square error):

E(w)=12n=1N{y(x⃗ (n),ω)t(n)}

以上内容是基于Christopher M. Bishop的《Pattern Recognition and Machine Learning》部分内容。由于时间原因,更新为不定期。目前内容不全。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值