[动态规划] LeetCode 123. 买卖股票的最佳时机 III

123. 买卖股票的最佳时机 III

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
     随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。

示例 2:

输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。   
     注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。   
     因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3:

输入:prices = [7,6,4,3,1] 
输出:0 
解释:在这个情况下, 没有交易完成, 所以最大利润为 0。

示例 4:

输入:prices = [1]
输出:0

提示:

1 <= prices.length <= 10^5
0 <= prices[i] <= 10^5
思路:动态规划

  • 状态定义:
  • dp[i][j][k] 表示到下标i这一天结束,持股状态为j,卖出次数为k时的利润;
  • j = 0表示不持股,j = 1表示当前持股;k0,1,2(最多可以完成两笔交易);
  • 状态转移:
  • dp[i][0][k]今天不持股: (1)昨天不持股,交易次数为k,且今天没有任何交易; (2)昨天持股,交易次数为k-1,且今天卖出;
  • dp[i][1][k]今天持股: (1)昨天持股,交易次数为k,今天没有任何交易; (2)昨天不持股,今天买入,且交易次数为k;
  • 初始化:
  • dp[0][0][k] = 0;
  • dp[0][1][k] = -prices[0];

注意:我们假设卖出股票时为1次交易次数


const int maxn = 1e5 + 50;
int dp[maxn][2][3];

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n = prices.size();
        if(n < 2)   return 0;
        memset(dp,0,sizeof dp);
       
        //第0天 持有与不持有与交易次数无关
        for(int k = 0; k < 3; k++) {
            dp[0][1][k] = -prices[0];
            dp[0][0][k] = 0;
        }
        
        for(int i = 1; i < n; i++){
            for(int k = 0; k < 3; k++){
                if(k == 0){
                    dp[i][0][k] = dp[i - 1][0][k];
                }
                else{
                    dp[i][0][k] = max(dp[i - 1][0][k],dp[i - 1][1][k - 1] + prices[i]);
                }
                dp[i][1][k] = max(dp[i - 1][1][k],dp[i - 1][0][k] - prices[i]);
            }
        }
        return dp[n - 1][0][2];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值