动态规划,作为程序员面试过程中几乎是必考的题目类型,在实际生产应用中也广泛使用。0-1背包问题作为最经典的算法之一,也衍生了很多其他的题目(如找零钱、爬楼梯等leetcode题目)。本人在复习之余,将总结下来的算法常识得以分享:
(一)什么是动态规划
作为运筹学的一个分支,动态规划(DP)最早是用于求解决策过程最优化的问题被提出,利用各阶段dp变量之间的关系,逐个求解,最终求得全局最优解的过程。再设计DP算法时,需确认原问题与子问题的解状态,每个状态下的DP值、边界状态值,以及状态转移方程。
此外,不同于分治策略,DP划分的子问题是有重叠的,解过程中对于重叠的部分只要求解一次,记录下结果,其他子问题直接使用即可,减少了重复计算过程。另外,DP在求解一个问题最优解的时候,不是固定的计算合并某些子问题的解,而是根据各子问题的解的情况选择其中最优的。即第i个状态的DP值dp[i]可能前i-1个状态(dp[1]、dp[2]、······、dp[i-1])都相关。
因此,动态规划求解具有以下的性质:最优子结构性质和子问题重叠性质
(1)最优子结构性质:最优解包含了其子问题的最优解,不是合并所有子问题的解,而是找最优的一条解线路,选择部分子最优解来达到最终的最优解。
(2)子问题重叠性质:先计算子问题的解,再由子问题的解去构造问题的解(由于子问题存在重叠,把子问题解记录下来为下一步使用)。
(二)0-1背包求解思路
①、将原问题分解为子问题(子问题和原问题形式相同,且子问题解求出就会被保存);
②、确定状态:0-1背包中一个状态就是N个物体中第i个是否放入体积为V背包中;
③、确定一些初始状态(边界状态)的值;
④、确定状态转移方程,如何从一个或多个已知状态求出另一个未知状态的值。(递推型)
(三)算法设计
(1)确认子问题和状态
01背包问题需要求解的就是,为了体积V的背包中物体总价值最大化,N件物品中第i件应该放入背包中吗?(其中每个物品最多只能放一件)
为此,我们定义一个二维数组,其中每个元素代表一个状态,即前i个物体中若干个放入体积为j的背包中最大价值。即设置dp[i][j],表示前i件中若干个物品放入体积为j的背包中的最大价值。
(2)初始状态
初始状态为dp[0][0]~dp[0][V]和dp[0][0]~dp[N][0]都为0,前者表示前0个物品(也就是空物品)无论装入多大的包中总价值都为0,后者表示体积为0的背包啥价值的物品都装不进去。
(3)转移函数:当第i个物品能够放进背包时(即背包容量j大于等于物品i的重量weight[i]),比较放入物品i前后,背包总价值,保留最大价值存放于当前状态。否则,直接不放入物品i。
(四)实现代码(Python版)
def knapsack(weights, values, target): if len(weights) != len(values): return -1 # set dp status dp = [] for i in range(0, len(weights)): dp.append([0]*(target+1)) for i in range(0, len(weights)): for j in range(0, target+1): if weights[i] <= j: # 第i个物品能够放进背包时(即背包容量j大于等于物品i的重量weight[i]) # 比较放入物品i前后,背包总价值,保留最大价值存放于当前状态 dp[i][j] = max(dp[i-1][j], dp[i-1][j-weights[i]]+values[i]) else: dp[i][j] = dp[i-1][j] for k in dp: print(k) return dp[len(weights)-1][target] # 返回二维数组最后一个值 if __name__ == '__main__': r = knapsack(weights=[0, 1, 3, 2, 6, 2], values=[0, 2, 5, 3, 10, 4], target=12) print(r)
运行结果
个人学习记录,由于能力和时间有限,如果有错误望读者纠正,谢谢!