《Real Image Denoising with Feature Attention》阅读笔记

《Real Image Denoising with Feature Attention》提出了一种单级盲实像去噪网络RIDNet,利用残差结构和特征注意力提升去噪效果。RIDNet在多个数据集上的实验显示其在合成和真实图像去噪方面的优越性能。网络结构包括四个EAM块,运行时间高效。
摘要由CSDN通过智能技术生成

一、论文

《Real Image Denoising with Feature Attention》

深度卷积神经网络在包含空间不变噪声(合成噪声)的图像上表现更好; 但是,它们的性能仅限于真实照片,并且需要多级网络建模。 为了提高去噪算法的实用性,本文提出了一种采用模块化架构的新型单级盲实像去噪网络(RIDNet)。 我们在残差结构上使用残差来缓解低频信息的流动,并关注功能以开发信道相关性。 此外,根据19种最新算法对三个合成和四个真实噪声数据集进行的量化指标和视觉质量评估,证明了我们RIDNet的优越性。

贡献:

  • 当前基于CNN的真实图像去噪方法采用两阶段模型。 我们提出了第一个仅使用一个阶段即可提供最新结果的模型。
  •    据我们所知,我们的模型是第一个将特征关注纳入去噪的模型。
  •    大多数当前模型连续连接权重层; 因此增加深度将无助于提高性能[21,41]。 同样,这样的网络13155可能遭受消失的梯度[11]。 我们提供了一个模块化网络,其中增加模块数量有助于提高性能。
  •    我们对三个合成图像数据集和四个真实图像噪声数据集进行了实验,以表明我们的模型在合成图像和真实图像上实现了定量和定性的最新结果。

二、网络结构

我们提出的模型包含四个EAM块。 除增强残差块中的最后一个Conv层和注意单元中的最后一个Conv层(内核大小为1×1)外,每个卷积层的内核大小均设置为3×3。 实现相同大小的输出要素图。 每个卷积层的通道数固定为64,但功能关注点的缩小比例除外。  16倍减少了这些Conv层; 因此只有四个特征图。 最终的卷积层根据输入输出三个或一个特征图。 至于运行时间,我们的方法需要大约0.2秒来处理512×512图像。

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值