向量与矩阵范数

一:向量范数

  1.  向量的1-范数: {\left\| X \right\|_1} = \sum\limits_{i = 1}^n {\left| {​{x_i}} \right|} ; 各个元素的绝对值之和;
  2. 向量的2-范数:{\left\| X \right\|_2} = {\left( {\sum\limits_{i = 1}^n {​{x_i}^2} } \right)^{\frac{1}{2}}} = \sqrt {\sum\limits_{i = 1}^n {​{x_i}^2} };每个元素的平方和再开平方根;
  3.  向量的无穷范数:{\left\| X \right\|_\infty } = \mathop {\max }\limits_{1 \le i \le n} \left| {​{x_i}} \right|
  4. p-范数:{\left\| X \right\|_p} = {\left( {\sum\limits_{i = 1}^n {​{​{\left| {​{x_i}} \right|}^p}} } \right)^{\frac{1}{p}}},其中正整数p≥1,并且有\mathop {\lim }\limits_{p \to \infty } {\left\| X \right\|_p} = \mathop {\max }\limits_{1 \le i \le n} \left| {​{x_i}} \right|

例:向量X=[1,2,3,4] ,求向量的1-范数,2-范数和无穷范数。

向量的1-范数:各个元素的绝对值之和为1+2+3+4=10;

Matlab代码:X=[1,2,3,4]; norm1=norm(X,1);

 

向量的2-范数:每个元素的平方和再开平方根为5.4772;

Matlab代码:X=[1,2,3,4]; norm2=norm(X,2);

 

向量的无穷范数:

1.正无穷范数:向量的所有元素的绝对值中最大的为4;

Matlab代码:X=[1,2,3,4]; norminf=norm(X,inf);

2.负无穷范数:向量的所有元素的绝对值中最小的;即X的负无穷范数为:1;

 Matlab代码:X=[1,2,3,4]; norminf1=norm(X,-inf);

 

二:矩阵范数

例如矩阵A为:

A=[2, 3,-5, -7;

4,6, 8,-4;

6,-11, -3,16];

(1)矩阵的1-范数(列模):{\left\| A \right\|_1} = \mathop {\max }\limits_{X \ne 0} \frac{​{​{​{\left\| {AX} \right\|}_1}}}{​{​{​{\left\| X \right\|}_1}}} = \mathop {\max }\limits_{1 \le j \le n} \sum\limits_{i = 1}^n {\left| {​{a_{ij}}} \right|};矩阵的每一列上的元素绝对值先求和,再从中取个最大的,(列和最大);即矩阵A的1-范数为:27

          Matlab代码:fs1=norm(A,1);

(2)矩阵的2-范数(谱模):{\left\| A \right\|_2} = \mathop {\max }\limits_{X \ne 0} \frac{​{​{​{\left\| {AX} \right\|}_2}}}{​{​{​{\left\| X \right\|}_2}}} = \sqrt {​{\lambda _{\max }}({A^T}A)} = \sqrt {\mathop {\max }\limits_{1 \le i \le n} \left| {​{\lambda _i}} \right|},其中   {\lambda _i}{A^T}A的特征值;矩阵的最大特征值开平方根。

          Matlab代码:fs2=norm(A,2);

 

(3)矩阵的无穷范数(行模):{\left\| A \right\|_\infty } = \mathop {\max }\limits_{X \ne 0} \frac{​{​{​{\left\| {AX} \right\|}_\infty }}}{​{​{​{\left\| X \right\|}_\infty }}} = \mathop {\max }\limits_{1 \le {\rm{i}} \le n} \sum\limits_{j = 1}^n {\left| {​{a_{ij}}} \right|};矩阵的每一行上的元素绝对值先求和,再从中取个最大的,(行和最大)

         Matlab代码:fswq=norm(A,inf);

 

下面要介绍关于机器学习中稀疏表示等一些地方用到的范数,一般有核范数,L0范数,L1范数(有时很多人也叫1范数,这就让初学者很容易混淆),L21范数(有时也叫2范数),F范数等,这些范数都是为了解决实际问题中的困难而提出的新的范数定义,不同于前面矩阵的范数。

关于核范数,L0范数,L1范数等解释见博客:

http://www.cnblogs.com/MengYan-LongYou/p/4050862.html

https://blog.csdn.net/u013066730/article/details/51145889

http://blog.sina.com.cn/s/blog_7103b28a0102w73g.html

 

(4)矩阵的核范数:矩阵的奇异值(将矩阵svd分解)之和,这个范数可以用来低秩表示(因为最小化核范数,相当于最小化矩阵的秩——低秩);

         Matlab代码:JZhfs=sum(svd(A));

 

(5)矩阵的L0范数:矩阵的非0元素的个数,通常用它来表示稀疏,L0范数越小0元素越多,也就越稀疏。

 

(6)矩阵的L1范数:矩阵中的每个元素绝对值之和,它是L0范数的最优凸近似,因此它也可以近似表示稀疏;

         Matlab代码:JZL1fs=sum(sum(abs(A)));

 

(7)矩阵的F范数:矩阵的各个元素平方之和再开平方根,它通常也叫做矩阵的L2范数,它的优点在它是一个凸函数,可以求导求解,易于计算;

         Matlab代码:JZFfs=norm(A,'fro');

 

(8)矩阵的L21范数:矩阵先以每一列为单位,求每一列的F范数(也可认为是向量的2范数),然后再将得到的结果求L1范数(也可认为是向量的1范数),很容易看出它是介于L1和L2之间的一种范数

          Matlab代码:JZL21fs=norm(A(:,1),2) + norm(A(:,2),2) + norm(A(:,3),2)++ norm(A(:,4),2);

MATLAB代码 

 

clear all;clc;
 
%% 求向量的范数
X=[2, 3, -5, -7];   %初始化向量X
XLfs1=norm(X,1);    %向量的1-范数
XLfs2=norm(X,2);    %向量的2-范数
XLfsz=norm(X,inf);  %向量的正无穷范数
XLfsf=norm(X,-inf); %向量的负无穷范数
 
%% 求矩阵的范数
A=[2, 3, -5, -7;
   4, 6,  8, -4;
   6, -11, -3, 16];     %初始化矩阵A
 
JZfs1=norm(A,1);        %矩阵的1-范数
JZfs2=norm(A,2);        %矩阵的2-范数
JZfswq=norm(A,inf);     %矩阵的无穷范数
JZhfs=sum(svd(A));      %矩阵的核范数
JZL1fs=sum(sum(abs(A)));% 矩阵的L1范数
JZFfs=norm(A,'fro');    %矩阵的F范数
JZL21fs=norm(A(:,1),2) + norm(A(:,2),2) + norm(A(:,3),2)++ norm(A(:,4),2);% 矩阵的L21范数

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值