PSO改进系列算法简介
1、引入w的PSO (标准粒子群优化算法) :标准粒子群优化算法,引入惯性权重w,w随着迭代次数的变化而变化。
2、APSO (Adaptive Particle Swarm Optimization) :自适应粒子群优化算法,引入三种策略:参数自适应策略,精英学习策略,状态评估策略。
3、CPSO (Cooperative Particle Swarm Optimization) :协作粒子群优化算法,将整个种群分为K1个D1维的小分组,K2个D2维的小分组,按组更新而不是整个粒子群整体更新。
4、CCPSO (Competitive and Cooperative Particle Swarm Optimization) :协作竞争粒子群优化算法,在协作粒子群算法基础上加上轮盘赌选择机制选取子群进行比较更新。
5、SLPSO (Social Learning Particle Swarm Optimization) :社会学习粒子群优化算法,根据适应度值升序排列,排在前面的粒子学习后面粒子,最后的粒子是最优的粒子。
6、CLPSO (Comprehensive Learning Particle Swarm Optimization) :综合学习粒子群优化算法,在每个维度上分别进行学习而不是所有维度整体学习,每次迭代随机选取两个粒子在每个维度上进行比较,选择好的进行更新。
7、PPSO (Parallel Particle Swarm Optimization) :并行粒子群优化算法,多个标准PSO算法共同进行,然后每次迭代选取并行中最好的。
8、IILPSO (Interswarm Interactive Learning Particle Swarm Optimization) :群间交互学习粒子群算法,两个子群中若有一个子群在指定的次数内最优值没有进行更新,那么启动交互学习策略,选出一个学习者和一个被学习者进行交互学习。
9、MPSO (Mutated Particle Swarm Optimization) :变异粒子群优化算法,与遗传算法中的变异操作类似,在规定次数下全局最优没有进行更新时启用变异策略,指定一个变异率进行变异。目的是防止陷入局部最优。
10、HPSO (Hierarchical Particle Swarm Optimization) :分层粒子群优化算法,去掉了惯性权重参数,只使用个体最优和全局最优来进行种群的更新。当某一个粒子在某一维度上的速度为0时,重新初始化该粒子在该维度上的速度。