PSO算法的改进【使用混沌优化算法】

本文介绍了一种结合混沌优化算法改进的粒子群优化(PSO)算法。通过混沌优化优选PSO参数,如加速因子和惯性权重,提高寻优效率。文章详细解释了PSO的工作原理及其迭代过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PSO精简描述:
        PSO初始化为一群随机粒子,然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪
两个“极值”来更新自己。pBest(个体极值)和gBest(全局极值)。迭代终止条件根据具体问题,
一般选为最大迭代次数或粒子群搜索到的最优位置满足预定最小适应阈值。 

       

 

 

 

 

        利用混沌优化算法对PSO算法参数即加速因子c1、c2和惯性权重w进行优选,从而达到改善算法效果的目的。

 

Reference:

混沌优化算法:
https://blog.csdn.net/qq_42489764/article/details/116246358
群体智能算法
https://scikit-opt.github.io/scikit-opt/#/zh/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值