【GPU调用及CUDA安装 看完全会!】使用gpu进行各类训练/运行代码

本文介绍了如何检查GPU是否可用,安装CUDA,以及如何在Python的PyTorch和TensorFlow框架中利用GPU进行text2vec模型的加速。包括安装步骤、设备选择和环境变量设置等关键操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

检查

是否有GPU
打开任务管理器,我这边显示有gpu
在这里插入图片描述
查看有没有安装cuda

nvidia-smi

在这里插入图片描述
我没有CUDA

安装CUDA

https://developer.nvidia.com/cuda-toolkit-archive
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

选择自定义安装
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

不要勾选Visual Studio

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值